
Module 8
Naming

Naming system

• A DCS supports several types of objects such as processes, files, I/O
devices, mail boxes and processor nodes

• The Naming facility of DCS Enables users and programs to assign
character-string names to objects and subsequently use these
names to refer to these objects

• The Locating facility Maps an object’s name to the object’s location
in a Distributed System

• Together they form a naming system that provides the users with
an abstraction of an object that hides details of how & where an
object is located in the network

• Naming system plays an important role in achieving the goal of
location transparency in a DCS

• It facilitates transparent migration and replication of objects and
object sharing

Desirable Features of a Naming System

1. Location transparency: means that the name of an object should
not reveal any hint as to the physical location of the object

• i.e., An object’s name should be independent of the physical connectivity of
topology of the system or the current location of the object

2. Location independency: For performance, reliability, availability,
and security reasons, DS provides the facility of object migration
that allows the movement of the objects dynamically among
various nodes of a system

• Location independency means name of an object need not be changed when the
object’s location changes

• A user should be able to access an object by its same name, irrespective of the
node from where he or she access it

Desirable Features of a Naming System (Cont’d)

• The requirement of location independency calls for a global naming
facility which has:

• An object at any node can be accessed without the knowledge of its physical
location

• To an object , any one can issue an access request without the knowledge of its
own physical location (also known as user mobility)

• A location-independent naming system should support a dynamic
mapping scheme so that it can map the same object name to different
locations at two different instances of time

• Hence location independency is a stronger property than location
transparency

3. Scalability: DCS vary in size from few nodes to many
hundreds of nodes

• They are open systems and their size changes dynamically

Desirable Features of a Naming System (Cont’d)

• Hence, it is impossible to have an a priori idea about how large the set of
names to be dealt with is liable to get

• Hence the naming system should be capable of adapting to this dynamically
changing size of the DCS that leads to the change in the size of the name
space

• i.e., A change in the system scale should not require any change in the naming
or locating mechanisms

4. Uniform naming convention: In many existing systems,
different ways of naming objects, called naming conventions
are used for naming different types of objects

• e.g., Filenames typically differ from user names and process names

• A good naming system should use the same naming convention across all
types of objects in the system

Desirable Features of a Naming System (Cont’d)

5. Multiple user-defined name for same object: For a
shared object, it is desirable that different users of the
object can use their own convenient names for accessing
it

• Should support multiple user defined names to the same object

• It should be possible for a user to change or delete his or her name for
the object without affecting those of other users

6. Group naming: A naming system should support many
different objects to be identified by the common group
name

• Such a facility is useful to support broadcast facility, to group objects for
group communication, for conferencing and so on

7. Meaningful names: A name can be simply any character
string identifying some object

Desirable Features of a Naming System (Cont’d)

• However, Users prefer meaningful names rather than jumble
of character string as it is easy to remember and use

• Hence a good naming system should support at least two
levels of object identifiers, one convenient for human users
and one convenient for machines

8. Performance: The most important performance measurement of
a naming system is the amount of time required to map an
object’s name to its attributes such as location

• In a distributed environment, this performance is dominated by the number of
messages exchanged during name mapping operation

• Hence, a naming system should be efficient in the sense that the number of
messages exchanged in a name mapping operation should be as minimum as
possible

Desirable Features of a Naming System (Cont’d)

9. Fault tolerance: A naming system should be capable of
tolerating, faults that occur due to failure of a
communication link or a node

• i.e., The naming system should continue functioning, may be in
degraded form, in the event of these failures

• The degradation can be in performance, functionality or both

10. Replication transparency: In a distributed system, the
replicas of an object are created to improve performance
and reliability

• The naming system should support the use of multiple copies of the
same object in a user transparent manner; i.e., user need not be aware
of the existence of multiple copies of an object in use

Desirable Features of a Naming System (Cont’d)

11. Locating the nearest replica: When a naming system supports
the use of multiple copies of the same object, it is important
that the object locating mechanism of the naming system should
always supply the nearest replica of the desired object

• The efficiency of the object accessing operation will be affected if the object
locating mechanism does not take this point into consideration

12. Locating all replicas: In addition to locating the nearest replica of
an object, it is also important from a reliability point of view that
all replicas of a desired object be located by the object locating
mechanism.

• Another replica can be used if nearest is inaccessible due to any reason, such as,
communication link failure.

• Name (Identifier)
• String composed of a set of symbols chosen from finite alphabet set.

A logical object that identifies a physical object to which it is bound
to.

• Human oriented names (High level names)
• A character string that is meaningful to its users.

• Different users can define their own names for shared objects.

• Independent of physical location or structure of objects.

• Not unique for an object & variable in length.

• System-oriented names (Low level names)
• Uniquely identify every object in entire system

• Bit patterns of fixed size automatically generated by system that can
be easily manipulated and stored by machines

Fundamental Terminologies and Concepts

Human Oriented
Name

System Oriented
Name

Replica

Replica

ReplicaFirst Level Mapping

Second Level Mapping

Physical addresses of
named objectsIn this naming model, a human oriented name first

mapped (translated) to a system oriented name that is
then mapped to the physical locations of the
corresponding objects replicas

Fundamental Terminologies and Concepts (Cont’d)

• Name space
• Set of names complying with a given naming convention is said to

form a name space.
• An abstract container providing context for the names it holds and

allowing disambiguation of items with same names residing in
different namespaces.

• Names in a namespace have to be unique.

• Flat name space
• Names are character strings exhibiting no structure. Primitive or flat

names.
• Suitable for small namespace

• Partitioned name space
• Name space is partitioned into disjoint classes (domains).
• Names defined in a domain must be unique within that domain.
• Name structure reflects physical or organizational associations
• Simple / Compound names
• Ex. Hierarchical name space – Telephone System, IP Addresses
• Number of levels may be fixed or arbitrary in hierarchical name space

• Name server
• Manages namespace
• Process that maintains information about named objects and provide

facilities that enables users to access that information.
• Binds object name to its location
• Several name servers present in distributed systems with each server

having information of a small subset of set of objects.
• Authoritative name server
• Partitioned namespaces easier to manage

• Name agent
• Communication between clients & name servers happens via name

agents.
• Maintains knowledge of existing name servers.

• Private name agent

• Works for a single client and is structured as a set of subroutines
linked to a client program.

• Shared name agent

• Structured as a part of the operating system kernel with system calls
to invoke the naming service operations.

• Context
• The environment in which name is valid.
• Represent division of name space along natural geographical,

organizational or functional boundaries.
• Qualified name (context, name pair) uniquely identifies an

object.
• Useful for partitioning the name space.
• In a partitioned namespace, each domain corresponds to context

of namespace.

• Name Resolution
• Process of mapping an object’s name to object’s properties, such

as its location.
• To resolve a name, client contacts its name agent, which contacts

a known name server, which may in turn contact other name
servers.

• In partitioned namespace, name resolution mechanism travels a
resolution chain from one context to another until the
authoritative name servers of named object are encountered.

• Abbreviation/ Alias
• Users can specify their own short-form substitutes for

compound qualified names called abbreviations.
• More than one simple name may be bound to same qualified

name within a given context.(synonyms)

• Absolute name
• An absolute name begins at the root context of the name space

tree and follows a path down to the specified object.

• Relative names
• It defines a path from the current context to the specified

object.

• Generic and multicast name
• Support one-to-many binding.
• Naming system allow a simple name to be bound to a set of

qualified names.
• Generic naming facility - Name is mapped to any one of the set

of objects to which it is bound.
• Group or multicast naming facility - Name is mapped to all the

members of the set of objects to which it is bound.

• Descriptive/ Attribute Based Name
• An object is identified by a set of attributes or properties that

describe the object & uniquely identify it among the group of
objects in the name space.

• All attributes together refer to a single object.
• Ex. User = ?, Creation date = ?, file type = ?

• Source – Routing Name
• Mirrors the structure of the underlying physical network. Eg,

host1/host2/host3/file 1

• One method is to treat each node of the system as a domain of the
name space and treat a reading from the real-time clock called
timestamp of a node as a unique identifier within the node

• Hence the global unique identifiers take the form of the pair (node-id,
timestamp)

• Another method is to treat each server as domain and then to allow
a server to generate object identifiers for the objects it serves in a
server-specific manner

• Then global unique identifier take the form of the pair (server-ID,
server-specific-unique identifier)

• The distributed approach has better efficiency and reliability as
compared to centralized approach, However, it has the following
drawbacks

Generating System-Oriented Names (Cont’d)

Generating System-Oriented Names (Cont’d)

• In a heterogeneous environment, the form and the length of identifier
may be different for different computers (nodes), resulting in non
uniform identifiers

• It may become awkward or inefficient for applications to be prepared to
deal with the non-uniformity of these low level identifiers

• Node or server boundaries explicitly visible in the scheme

• Generating Unique Identifiers in the Event of Crashes

• Another important problem related with the creation of unique
identifiers (global or local) is to be able create unique identifiers in
the face of crashes

• A crash my lead to the loss of state information of a unique identifier
generator and hence on recovery may not function properly, which
may result in the generation of non-unique identifiers

Generating Unique Identifiers in the Event of Crash

• Two basic approaches to solve this problem are:

• Using a clock that operates across failures: is used at the location of the
unique identifier generator

• This clock is guaranteed to continue operating across failures and it will
not recycle during the period within which the needed identifier must be
unique

• To implement this method one may require rather very long identifiers
depending on the granularity of the clock interval needed

• Using two or more levels of storage are used and the unique identifiers
are structured in a hierarchical fashion with one field for each level

• A counter associated with each level contains the highest value of the
corresponding field assigned

• The current values of these fields are cached in the main memory

Generating Unique Identifiers in the Event of Crash

• When a lower level field is about cycle or the associated storage device
crashes, the next higher level counter is incremented and the lower level
counters are reset

• If a stable storage (the information on which can survive crashes) is used,
two levels storage (the upper level being the main memory storage and
the lower level being the stable storage) are sufficient to creating a safe
and efficient unique identifier generator

• As compared to the first method this method can yield shorter
identifiers, but is more complex to implement

• Use RAID to avoid disk crash and to build stable storage

Object Locating Mechanism

• Object locating is the process of mapping an object’s system
oriented unique identifier (UID) to the replica locations of the
object

• The object locating operation is different and independent of
the object accessing operation

• In DS, it is the only process of knowing the objects location, i.e.,
the node on which it is located

• The object accessing involves process of carrying out desired
operation (e.g., read, write) on the object and it can only start
after object locating operation has been carried out
successfully

• Several object locating mechanism have been proposed and
used by different distributed operating systems

Object Locating Mechanism (Cont’d)

• The suitability of a particular mechanism for a distributed
system depends on various factors such as the scale of system,
the type of UID being used for its naming system, whether the
system supports object migration, local transparency of
objects and so on

• These mechanisms are

• Broadcasting

• Expanding ring broadcast

• Encoding location of objects within its UID

• Searching creator node first and then broadcasting

• Using forward location pointer

• Using hint cache and broadcasting

Broadcasting

• An object is located by broadcasting a request for the object from a client node

• Request processed by all nodes & nodes currently having object reply back to
the client node

• The process is very simple and has high degree of reliability because it supplies
all the replica locations of the target object

• But poor efficiency & scalability, because of the vast amount of network traffic
generated (directly proportional to the no of nodes present)

• Suitable for small networks with high communication speed and object locating
requests are not so frequent

Object location
1

2
1

1 Client node

1 - Broadcast request message

2 - Reply from node on
which the object is located

Expanding Ring Broadcast

• Pure broadcasting is expensive for large networks and direct broadcast
to all nodes may not be supported by wide area networks

• Hence a modified form of broadcasting is called expanding ring
broadcast (ERB)

• It is normally employed in an internetwork that consists of LANs
connected by gateways

• Increasingly distant LANs are systematically searched until the object is
found or until every LAN has been searched unsuccessfully

• The distance metric used is a hop

• Hop - A hop corresponds to number of gateways in between processors

Expanding Ring Broadcast (Cont’d)

• If a message from processor A to processor B must pass through at least
two gateways, A and B are two hops distant

• The processors in the same LAN are zero hop distant

• Ring - A ring is a set of LANs, a certain distance away from a processor

• Ringi[A] – set of LANs i hop away and Ring0[A] is a local network

• The ERB search works as follows to locate an object X

• Beginning with i =0, request message is broadcast to all LAN’s in Ringi[A]
(fig. in the next slide)

• If response received, search ends or else i is incremented by 1 and
broadcast again

Client

node

2

1

2

2

2

i

1

1

1

i

i

i

1 - Searching nodes at 0 hop distance

2 - Searching nodes at 1 hop distance if search of 0 hop fails

i + 1 - Searching nodes at i hops distance if searches up to i -1 hops fail

Expanding Ring Broadcast (Cont’d)

• The ring size is bounded from above by the diameter of the internetwork

• The method does not supply all the replica locations of an object
simultaneously, but it supplies the nearest replica

• The efficiency of the search is directly proportional to the distance of the
object from the client node at the time of locating it

• Encoding Location of Object within its UID

• The scheme uses structured object identifiers

• One field of the structured UID is the location of the object

• Given an UID, it extracts the corresponding object’s location from its UID by
examining the appropriate field of the structured ID

• Extracted location is the node on which the object resides

Encoding Location of Object within its UID

• This is a straightforward and efficient scheme

• One restriction of the scheme is the object is not permitted to move
once it is assigned to a node, as it would require change of its UID

• Hence the object is fixed to a node throughout its lifetime

• Another limitation is the scheme is that it is not clear how to support
multiple replicas of an object  no migration, no replication

Object location
Client node

1

1 - Extracting object’s location from its
UID. No message exchange with any
other node is required for locating the
object.

Searching Creator Node First and then Broadcasting

• The scheme is a simple extension of the previous scheme to
support object migration facility

• The method is based on the assumption that it is very likely for an
object to remain at the node where it was created(though may
not be true always)

• It is because the object migration is not frequent as it is an
expensive operation

• Creator node information is extracted from the UID and request is
sent to that node

• If object no longer resides on its creator node, a failure reply is
replied back to the client node

3

2
1

34

Client nodeObject location

Creator node

1 - Searching creator node; 2 – Negative reply from creator node

3 - Broadcast request; 4 - Reply from object’s current location

Searching Creator Node First and then
Broadcasting (Cont’d)

• In case of failure object is located by broadcasting the request from the
client node

• As compared to simple broadcasting scheme, this method helps in
reducing the network traffic to a great extent

Searching Creator Node First and then
Broadcasting (Cont’d)

• Further, the scheme is more flexible than the method of encoding the
location of an object within its UID because it allows the system to
support object migration

• It does not support locating of replicas

• The use of broadcast protocol to locate those objects that are not found
in its creator nodes limits the scalability of the mechanism

Using Forward Location Pointer

• The scheme is an extension of the previous scheme and the aim is
to avoid broadcast protocol

• Whenever an object is migrated from one node to another, a
forward location pointer is left at its previous node

• To locate a node, system first contacts creator node and then
simply follows forward pointers or chain of pointers to the node
on which the object currently resides

• Its main advantage is that, it avoids use of broadcast protocol
totally and also supports object migration facility

• It has the following drawbacks

• Chain of pointers can be long and cost of locating is proportional to
chain length

2

1

3
4

Client nodeObject location

Creator node

1, 2, 3 – Path of message forwarding

4 - Reply from the node on which the object is located

Using Forward Location Pointer

 It impossible to locate an object if an intermediate pointer is lost or not
available because of node failure and hence reliability is poor

 It introduces additional system overhead to upkeep

Using Hint Cache & Broadcasting

• Another commonly used approach is the cache-broadcast scheme

• In this scheme, cache is maintained on each node that contains the (UID,
last known location) pairs of a number of recently referenced remote
objects

• Given a UID, Local cache is searched for the UID; If found, location
information is extracted from the cache

• Request is then send to the node specified in the extracted location
information

• If object no longer resides at that node, negative reply is sent back

• If UID info is not found in the cache or cache info is outdated, location is
then searched through broadcasting and is recorded in the client’s node
cache

Client node

2

2

1

2

3

Object location

1

1 - Searching of local cache

2 - Broadcast request message

3 - Reply from the node on which the object is located.

Using Hint Cache & Broadcasting (Cont’d)

Using Hint Cache & Broadcasting (Cont’d)

• Note that cache entry serves as only a hint because it is not
always correct

• The scheme can be very efficient if a high degree of locality is
exhibited in locating objects from a node

• It is also flexible since it can support object migration facility

• The method of on-use update of cached information avoids the
expense and delay of having to notify other nodes when an object
migrates

• One problem with this scheme, is that broadcast requests will
clutter up the network, disturbing all the nodes, even though only
a single node is directly involved with each object-locating
operation

Using Hint Cache & Broadcasting (Cont’d)

• It is the most commonly used object-locating mechanism in
modern distributed operating systems

• Efficient if high degree of locality is exhibited

• Supports object migration

• Broadcasting involved

• Schemes broadcasting, expanding ring broadcast and using hint
cache broadcasting can work with both unstructured and
structured UIDs

• While encoding location of object within its UID, searching creator
node first and broadcasting and using forward location pointer
require structured UID

Using Hint Cache & Broadcasting (Cont’d)

• As summation schemes encoding the location of an object with in
UID, searching the creator node and then broadcasting and using
forward location pointers require structured UID

• Schemes broadcasting, expanding ring broadcast and using hint
cache and broadcasting can work with both unstructured and
structured UIDs

• Also notice that encoding location of object within its UID works
without any exchange of messages with any other node, but it is
inflexible as it does not support object migration and replication
facilities

Human Oriented Names

• System oriented names, though useful and appropriate for machine
handling, are not suitable for use by users

• Users will have tough time remembering these names, and each object
has only single system oriented name and all users have to remember
and use this only one name

• To overcome this limitation, almost all the naming systems provide the
facility to the user to define and use their own suitable names for
various objects in the system

• These user defined object names, which form a name space on top of
the system oriented names’ name space are called human oriented
names which have the following characteristics:

• These are character strings that are meaningful to their users

Human Oriented Names (Cont’d)

• Defined and used by users

• Different users can use their own suitable names for a shared object

• i.e., the facility of aliasing is provided to the users

• Human oriented names are variable in length not only in names for different
objects but even in different names for the same object

• Due to facility of aliasing, same name be used by two different users at the
same time to refer to different objects

• Furthermore, a user may use the same name to represent at different
instances of time to refer to different objects

• Hence, human oriented names are not unique in space or time

• Because of the advantages of easy and efficient management of name
space, hierarchically partitioned namespace are commonly used for
human-oriented objects names

Constant vs. Arbitrary Number of Levels

• Hierarchically partitioned namespace can have either constant number of
levels or arbitrary number of levels

• However, it is important to decide in advance of the two possibilities

• Both schemes have their advantages and disadvantages

• Constant number of levels

• Simpler and easier to implement as compared to arbitrary number of level
scheme

• The software for manipulating names are less complicated

• Difficult to decide number of levels in advance

• All Algorithms for name manipulation systems have to be changed if new
levels are added later

Constant vs. Arbitrary Number of Levels (Cont’d)

• Arbitrary number of levels

• Expansion is easy by combining independently existing name spaces
into a single name space by creating new root and making the
existing roots as its children

• The figure in the next slide illustrate this diagrammatically

• Name that was unambiguous within its old namespace, is
unambiguous in new namespace, even if the name also appeared in
some other name space that was combined

• No need to change any of the algorithms for name manipulation
when the number of levels change

• Its main disadvantage is that software for manipulating names tend
to be more complicated when compared to constant level scheme

new root

root -1 root -2

user-1
user-2

project-1

file-1

user-1
user-2

project-1

file-1

Combining two name space to form a single name space by adding a new root

Constant vs. Arbitrary Number of Levels (Cont’d)

Major Issues in Human-Oriented Names

• In overall the arbitrary level scheme is:

• More flexible than constant level schemes

• This is used in all the recent distributed systems

• Hence all discussions here will be based on arbitrary level naming system

• Major Issues in Human-Oriented Names

• Selecting a proper scheme for global object naming

• Selecting a proper scheme for partitioning a name space into contexts

• Selecting a proper scheme for implementing context binding

• Selecting a proper scheme for name resolution

Human Oriented Hierarchical Naming Schemes

• Combining an object’s local name with its host name

• The naming scheme uses a name space that comprises of several
isolated name spaces

• Each isolated name space corresponds to a node of a distributed system
and a name in this name space uniquely identifies an object of the node

• In a global system the objects are named by some combination of their -
host name, local name which guarantees a system wide unique name
where host name is the name of the node on which the object resides

• This naming system is simple and easy to implement

• Its main drawback is that it is neither location transparent nor location
independent

Human Oriented Hierarchical Naming Schemes

• It is inflexible in the sense that object’s absolute name changes
every time the object migrates from one node to another

• Hence not suitable for modern distributed operating system

• Interlinking isolated name spaces into a single namespace

• In this scheme, also the global name space is comprised of
several isolated name spaces

• However, unlike the previous scheme in which the isolated name
spaces remain isolated throughout, the isolated namespaces are
joined together to form a single naming structure the global
name space

• The position of these component name spaces in the naming
hierarchy is arbitrary

Human Oriented Hierarchical Naming Schemes

• In the naming structure, a component name space may be placed
below any other name space either directly or through other
component name spaces

• In this scheme there is no notion of absolute pathname

• Each pathname is relative to some context, either to the current
working context or to current component name space

• This naming system is used in UNIX United to join number of
UNIX systems to compose a UNIX United system

• In the single naming structure of UNIX United, each component
system is a complete UNIX directory tree belonging to a certain
node

• The root of each component name space is assigned a unique
name so that they become accessible and distinguishable
externally

Human Oriented Hierarchical Naming Schemes

• A component’s own root is still referred to as / and still serves as
the starting point of all pathnames starting with a /

• The UNIX notation ../is used to refer to the parent of a
component’s own root

• Hence, there is only one root that is its own parent and that is
not assigned a string name, namely the root of the composite
structure, which is just a virtual root needed to make the whole
structure a single tree

• A simple example of such a naming structure is shown in the next
slide, in which the composite structure is comprised of two
component name spaces A and B whose roots are named root-1
and root-2, respectively

New root

Root-1 Root-2

User-2User-1

Project-1

File-1

User-1

Project-1

File-1

User-2

Component name space A Component name space B

New name space

Human Oriented Hierarchical Naming Schemes

Human Oriented Hierarchical Naming Schemes

• Note that within the component name space A, file-1 of the two
component name spaces A and B will be referred to as /user-
1/project-1/file-1 and ../root-2/user-1/project-1/file-1
respectively

• Similarly if the current working directory is if client is project-1 of
component name space B, file-1 of the two component name
spaces A and B will be refer to as ../../root-1/user-1/project-
1/file-1 and file-1 respectively

• The main advantage of this naming scheme is that it is simple join
existing name spaces into a single global name space

• However, In naming system that employ this scheme for global
object naming, an important issue that need to be handled is to
allow clients to use names that were valid in independent
namespaces without need to update them to match new
namespace structure

Human Oriented Hierarchical Naming Schemes

• Sharing Remote Name Spaces on Explicit Request

• This scheme, popularized by Sun Microsystems’ NFS, is also based on
the idea of attaching the isolated name spaces of various nodes to
create a new name space

• In this scheme users are given the flexibility to attach a context of a
remote name space to one of the contexts of their local name spaces

• Once a remote context is attached locally, its objects can be named in
a location transparent manner Ex. mount protocol

• The goal is to allow some degree of sharing among the name spaces
of various nodes in a transparent manner on explicit request by the
users

• Therefore, the global view of the resulting name structure is a forest
of trees, one for each node, with some overlapping due to the shared
subtrees

Sharing Remote Name Spaces on Explicit Request

• Unlike the previous scheme in which the entire name space of each node
is attached to a single naming structure, in this scheme the users have
the flexibility to attach to their local name space tree either a complete
remote name space or a part of it (subtree)

• Request to share a remote namespace affects only the client from which
the request was made and no other node

• This ensures node independence

• In NFS, mount protocol is used to attach a remote name space directory
to a local name space

• Hence to make a remote directory accessible in a transparent manner
from a node, a mount operation has to be performed from that node

• The node that performs mount operation is called the client node and
the node whose name space directory is mounted is called a server node

Sharing Remote Name Spaces on Explicit Request

• NFS allows every machine to be both a client and a server at the
same time

• A server must export all those directories of its name space tree that
are to be made accessible to remote clients and complete subtree
rooted at an exported directory is exported as a unit

• Hence, all directories below an exported directory automatically
become accessible to client as the mounting process sets up a link
between mount point of client’s local namespace & exported
directory of server’s namespace

• The semantics of the mount operation are that a server’s file system
directory exported by the server is mounted over a directory of the
client’s file system

Sharing Remote Name Spaces on Explicit Request

• The mounted directory’s subtree of the server file system appears to be an
integral part of the client’s file system, replacing the subtree descending
from the client’s local directory on which the server’s directory was mounted

• There is no difference between the file located on remote file server and a
file located in the local disk

• A client can mount a directory in one of following ways:

• Manual mounting: mount command is to be used every time to access
server directory is to be mounted on the client’s local name space

• umount allows to dismount the directory

• The user must be a super user to use the mount and umount commands

• This allows flexibility to the clients to dynamically mount and unmount servers’
directories depending on the changing needs

N1

dir1

user1

N1

dir1

user1

dir2

dir3

N2

user2

dir2

N2

user2

dir1

dir3

dir2

After Mounting

Sharing Remote Name Spaces on Explicit Request

(a)
(b)

(c

)
(d

)

(a) A part of the name tree of node N1; (b) a part of the node N2; (c) structure of

the name tree of Node N1 after mounting dir2 of node N2 over dir1; (d) structure

of the name tree N2 after mounting dir1 of node N1

Sharing Remote Name Spaces on Explicit Request

• Static mounting: clients mount automatically the required directories
of their choice out the directories exported by the server without
manual intervention

• The required commands to mount the desired files are written into a file called
/etc/rc file, which is automatically executed when the client machine is booted

• Hence all mount commands take place automatically at boot time

• Automounting: allows server directories to mounted only when required
if the file is not accessed for a particular period of time, it is
automatically dismounted

• Advantages

• Provides flexibility to attach only necessary portions of remote name space

Sharing Remote Name Spaces on Explicit Request

• Instead of a single server, a set of servers’ directories may also be
simultaneously associated with a directory of client’s local name space

• In this case, when the client accesses a file in the name space below the
mount directory for the first time, the OS sends a message to each servers
whose directories are associated

• The first one to reply wins, and its directory is mounted

• Automounting scheme helps to achieve fault tolerance because a server
need to be up and working only when client actually needs it and when set
of servers have the same file

• Disadvantages

• It does not provide a consistent global name space for all nodes i.e. same
object may have different absolute names when viewed from different nodes

Sharing Remote Name Spaces on Explicit Request

• The only way ensure that all nodes use the same name for the same object is
by careful manual management of each nodes mount table

• Such systems do not scale well

• Require management of each node’s mount table administrative
complexity

• Directories exported by failed nodes become unavailable on its client nodes

• Similarly migrating objects from node to another requires changes in the
name spaces of all the affected nodes

• Does not provide location transparency & user mobility as the specification
of remote directory as an argument for mount operation is done in a non-
transparent fashion

A single global name space

• A single global name structure spans all the objects of all the nodes in a
DS

• Same namespace is visible to all users & object’s absolute name is always
the same irrespective of its location

• Hence the scheme supports location independency of - accessing as well
as accessed object

• Most commonly used approach in modern Distributed Operating System

• Storing naming info in a centralized node or replicating it every node is
not desirable because of the storage overhead involved

• Several distributed operating Systems use single global name space
approach for object naming

A single global name space

• In this scheme, a single global name structure spans all the nodes in the
system

• Hence the same name space is visible to all users and an object’s
absolute name is always the same irrespective of the location of the
object or the user accessing it

• Thus the scheme supports both types of location independency – that of
the location of the accessing object (e.g. process) and the location of the
accessed object

• The single global name space approach is the most commonly used
approach by modern Distributed Operating Systems

• Hence subsequent discussion will be based on this approach

Lecture 46
Human Oriented Names - II

Distributed Computing

Partitioning a Name Space into Contexts

• Name space management involves storage and maintenance of naming
information, which consists of object names, object attributes, and the
bindings between the two

• Due to the reliability and space overhead problems in distributed system,
storing the complete naming information at a central node or replicating
it at every node is not desirable

• Hence, the naming information is decentralized and replicated by having
several naming servers, each having a copy of a portion of the complete
naming information

• These name servers interact among themselves to maintain the naming
information and to satisfy the name resolution requests of the users

Partitioning a Name Space into Contexts

• A basic problem is how to decompose the naming information
database to be among the name servers

• The main goal of the decomposition mechanism for this purpose
is to minimize the overhead involved in the maintenance of
naming information and the resolution of names

• The concept of context is used for partitioning a name space into
smaller components

• Contexts represent indivisible units of storage and replication of
information regarding the named objects

• A name space is partitioned into contexts by using clustering
conditions

• A clustering condition is an expression that, when applied to a name,
returns either a true or false value, depending on whether the given
name exists in the context designated by the clustering condition

Algorithmic Clustering

• The three basic clustering methods are algorithmic clustering,
syntactic clustering and attribute clustering which are discussed
here

• Algorithmic Clustering

• Names are clustered according to the value that results from applying
a function to them

• Therefore in algorithmic clustering, the clustering condition is a
predicate of the form function(name) = value

• For example a hash function that clusters the names into buckets is a
good example of algorithmic clustering

• Supports structure free name distribution i.e. does not have any
restriction on the administrative control over parts of name space

Func-1(name) : if (total characters (name) = even)

Func-2(name) : if (total vowels (name) = even)

Func-1(name)=1London Paris Arizona
Berlin Mexico Nara
Oregon NagasakiFunc-1(name)=0

Func-2(name)=0 Func-2(name)=1

London Berlin Mexico
Nara Oregon Nagasaki

London Berlin Nara
Nagasaki

Mexico Oregon

Paris Arizona

Algorithmic Clustering (Cont’d)

Algorithmic Clustering (Cont’d)

 Simple example of the clustering of names is given in the figure

 At first func-1 is applied to names in the name space to partition
them into two contexts

 One of the context is still found to be large

 Hence a second function func-2 is applied to the names of this
context to further partition the context into smaller contexts

 Thus starting with a complete name space as a single context, a
sequence of clustering conditions can be applied to yield reasonably
sized contexts

 Can be used for flat name spaces also

Algorithmic Clustering (Cont’d)

• The main advantage of algorithmic clustering mechanism is that it supports
structure free name distribution that places no restriction on the
administrative control over parts of name space

• The partitions of such a name space do not correspond to the structure of
the names, such as their sizes, or the number component names or the
order of component names or characters with in a name, and so on

• In particular the owner of an object may choose its authoritative name
servers, subject to administrative constraints, independent of the object
name

• Algorithmic clustering also has the advantage that it allows a healthy name
resolution tree to be built even for flat name space

• Difficult to devise proper clustering functions; if not selected properly end
up with some large and some too small clusters

Syntactic Clustering

• This is the most commonly used approach for partitioning name space
into contexts

• Syntactic clustering is done using pattern matching techniques

• Patterns are the templates against which a name is compared, wild card
search which are denoted by asterisks are supported and match any
sequence of characters

• Thus a syntactic clustering condition that is meant for a particular
pattern, when applied to a name, returns TRUE if the name matches the
pattern

• All names that match particular pattern, such as names with a common
prefix are considered part of the same context

• As an illustration a simple example of syntactic clustering of names are
given in the next slide

/cntry/in/del /cntry/in/mum /cntry/us/chi
/cntry/us/ny /usr/p1/f1 /usr/p1/f2

/usr/p1/f3 /usr/g1/f1 /usr/g1/f2

in/del in/mum
us/chi us/ny

Matches the
pattern “/cntry/”

Matches the
pattern “/usr/”

p1/f1 p1/f2 p1/f3
g1/f1 g1/f2

Del mum chi ny f1 f2 f3 f1 f2

Matches the
pattern “/p1/”

Matches the
pattern “/us/”

Matches the
pattern “/in/”

Matches the
pattern “/g1/”

Syntactic Clustering (Cont’d)

Syntactic Clustering (Cont’d)

• It can be used for structured or unstructured names

• Figure shows the partitioning of structured names and figure in the
following slide shows partitioning of flat names

• It can be seen from the first figure that hierarchically structured name
spaces pattern matching is usually performed on a component-by
component basis and resulting contexts usually contain only the
unmatched part of the names

• Hence at subsequent levels, a new clustering condition is applied only on
the truncated part of the names

• Syntactic clustering mechanism allows names to be resolved in a manner
similar to their structure as is done by all management systems

• This means simple matching suffices as a clustering technique

Syntactic Clustering (Cont’d)

Poppy Poster Powder

Power Sheep Shark

Silky Silver Simple

Poppy Poster

Powder Power

Sheep Shark

Silky Silver

Simple

Powder

Power

Poppy

Poster Silky

Silver

Simple

Sheep

Shark

Matches the pattern

“P*”
Matches the pattern

“S*”

Matches

“Pow*”

Matches

“Pop*”

Matches

“Pos*”

Matches

“Si*”

Matches

“Sh*”

Attribute Clustering

• The method of attribute clustering is used by attribute based naming
conventions

• In this method names are grouped based on the attributes possessed by
the names

• An attribute has both type and a value, where the type indicates the
format and meaning of the value field

• Hence, all names having the same attribute (type, value) pair are placed
in the same partition in the attribute clustering mechanism

• As an illustration, a simple example of attribute clustering of names is
given in the slide

Type = source , lang = basic , name = P1

Type = source , lang = C , name = P2

Type = object , name = P1

Type = object , name = P2

Lang=basic, name=P1

Lang=C, name=P2

Name = P1

Name = P2

Matches
attribute
Type=source Matches attribute

Type= object

Attribute Clustering (Cont’d)

Attribute Clustering (Cont’d)

• Note that in a hierarchically structured name space, attribute
clustering is usually performed on an attribute-by-attribute basis,
and the resulting contexts contain only the unmatched attributes
of the names

• At subsequent levels, a new clustering condition is applied only on
the remaining attributes of the names

• However, attribute clustering conditions are not restricted to
matching a single additional attribute in each step and several
attributes may be matched in a single step

Context Binding

• The contexts of a name space are distributed among the various name
servers managing that name space

• i.e., a name server normally stores only a small subset of the set of
contexts of the name space

• When a name is to be resolved, a server first looks in local contexts for
an authority attribute for the named object

• Authority attribute contains a list of the authoritative name servers for
the named object

• If the authority attribute is not found in a local context, checks context
binding

• Context Binding associates the context within which it is stored to
another context, that has more information about named object &
name servers that store that context

Context Binding (Cont’d)

• Two Strategies normally used for context binding are:

• Table - Based Strategy

• Most commonly used approach for implementing context binding in
hierarchical tree structured name spaces

• Each context is a table having two fields: the first field stores a component
name of the named object and the second field either stores context binding
information or authority attribute information

• The context bindings reflect the delegation of authority for managing parts
of the name space

• The contexts of table based strategy is also called as directories

• As an illustration an example of table based strategy for implementing
context bindings is given in the next slide

Table - Based Strategy

Context Binding (Cont’d)

• Procedure - Based Strategy

• Context binding done by procedure, which, when executed, supplies
information about the next context to be consulted for the named
object

• The syntactic clustering condition used by each context can also be
used as the procedure for supplying context binding for the names
defined with in context

• Less flexible when compared to table based strategy as changing of
context binding will require changes in clustering procedures

• No configuration data is required & hence no data management
required

Distribution of Contexts and Name Resolution
Mechanisms

• Name resolution is the process of mapping an object’s name to the
authoritative name servers of the object

• It involves transversal of a resolution chain of contexts until the
authority attribute of the named object is found

• Traversal of the resolution chain of contexts for name is greatly
influenced by the location of these contexts in a DS

• Some of the commonly used name resolution mechanisms:

• Centralized approach

• Fully replicated approach

• Distribution based on physical structure of name space

• Structure free distribution of contexts

Distribution of Contexts and Name Resolution Mechanisms
(Cont’d)

• Centralized approach
• A single name server in the entire distributed system is located at a

centralized node

• It is responsible for storing all contexts and maintaining the name mapping
information in them up to date

• Location of centralized server known to all nodes

• Simple, easy to implement and efficient but not scalable & reliable

• Fully replicated approach
• A name server is located on each node of distributed system & all contexts

are replicated at every node

• Simple & efficient as resolution requests are serviced locally without the
need of any communication with other nodes

• Large resource overhead especially for large name space and in maintaining
consistency over all the nodes

• Not suitable for large name spaces

Distribution of Contexts and Name Resolution Mechanisms
(Cont’d)

• Distribution based on physical structure of name space
• Most commonly used approach for hierarchical tree-structured name spaces

• The name space is divided into several subtrees that are known by different
names in different systems like domains, zones etc

• There are several name servers, with each server providing storage for one or
more zones (domains)

• Each client maintains a name prefix table

• Consistency of name prefix table entries is maintained be detecting &
updating stale table entries on use

• Advantages
• Matching name prefix rather than full names allows a small number of table

entries to cover large number of names resulting in good performance

/

a d g

b c e f

k

i

j

h

S1

S2 S3

S4

Name Prefix Zone Identifier

Server Identifier Specific Zone Identifier

/ S1 12

/a S2 33

/g S3 24

/g/i S4 56

Distribution of Contexts and Name Resolution Mechanisms
(Cont’d)

• Name prefix table helps in bypassing part of directory lookup mechanism

• So performance & reliability enhances because a crash on one name server
does not prevent clients from resolving names in zones on other servers

• On use consistency checking saves consistency control overheads

• Structure Free Distribution of Contexts

• Name services should be able to be reconfigured if present servers become
overworked or if system scale changes

• Reconfiguration might require changing an object’s authoritative name
server

• Use Structure Free Distribution: Context of a namespace can be freely
stored/ moved at any name server independently of any other context

• Permits maximum flexibility

Issues in Structure Free Distribution

• Locating Context objects during Name Resolution

• Name is always consists of a context/name pair; i.e., name is always
associated with a context

• Using metacontext

• It contains name & authority pairs for all context objects in namespace and size of
the meta context depends on the no of contexts in name space

• To resolve a name first metacontext is referred to obtain authority attribute of
context

• Always start resolution at root context which is replicated at all name
servers; used when the name space is structured as single global hierarchical
name tree

• Interacting with name servers during Name Resolution

• Various contexts of a given pathname may be stored at different name
servers and hence the resolution of a pathname is such a situation will
involve interacting with all the name servers that store one or more contexts
of pathname

Recursive

Name
agent

Name
server

Name
server

Name
server

4

1

6

7

3

5

2

client

8

 The name agent forwards the name resolution request to the name server
and stores the first context needed to start resolution of the given name

 Then the name servers storing the contexts of the given pathname are
recursively activated on after another until the authority attribute of the
named object is extracted

 Recursively in the opposite direction the authority attribute to the name agent

Name
agent

Name
server

Name
server

Name
server

4

1

6

7
3 5

2

client

8

 In this method name server does not call each other directly; rather the name
agent retains the control over the resolution process and calls each of the
servers involved in the resolution process

 If resolution, the first server sends the authority attribute of the object else
the next server to be contacted

 The process continues until the name is fully resolved and receives the
authority attribute of the named object

Iterative

Name

agent

Name

server

Name

server
Name

server

4

1 6

3

2

client

5

 The name agent sends the resolution request to the name server that stores
the first context required to start the resolution process

 It resolves as many components as possible and passes on the unresolved
portion to the next server

 This process continues until authority attribute of the named object is
encountered and it is returned directly to he name agent

Transitive

Lecture 47
Name Caches

Distributed Computing

Name Caches

• It has been found that in OS that provide a flexible hierarchical name
space, the system overhead involved in name resolution operations is
considerably large

• Studies have shown that nearly 40% of the system call overhead in UNIX
is for file name resolution

• Even in case of network traffic, large portion is naming related

• Investigations have found that a simple distributed name cache can have
substantial positive effect on distributed system performance

• Client caches the result of a name resolution operation for a while,
rather than repeating it every time the value is needed

• Characteristics of name service related activities:

Name Caches (Cont’d)

• High degree of locality of name lookup (spatial locality):

• The property of “locality of reference” has been observed in program execution,
file access , as well as database access

• Measurements clearly show that a high degree of locality also exists in the use of
pathnames for accessing objects

• Due to this locality feature a reasonable size name cache used for caching recently
used naming information provide excellent hit ratios

• Slow update of name information database:

• It has been observed that naming data does not change very fast, so
inconsistencies are rare

• The activity of most users is usually confined to a small, slowly changing subset of
the entire name information database

• Most of the naming data have a high read-to-modify ratio

Name Caches (Cont’d)

• Hence the cost of maintaining the consistency of cached data is very low

• On-use consistency of cached information is possible:

• An attractive feature of name service related activity is that it is possible
to find that some thing does not work if one tries to use obsolete naming
data, so that it can be attended to at the time of use

• i.e., Name cache consistency can be maintained by detecting and
discarding stale cache entries on use

• With on-use consistency checking, there is no need to invalidate all
related cache entries when a naming data update occurs, yet stale data
never causes a name to be mapped to a wrong object

Types of Name Caches

• Depending on the type of info stored in each entry name cache
can be:

• Directory cache

• Each entry consist of a directory page and used in those systems
that use iterative method of name resolution

• All recently used directory pages that are brought to the client
node during name resolution are cached for a while

• Operations like listing the contents of a directory, expanding wild
card arguments, and accessing parent directories all use
information found in directory pages

• Entire page cached for only one useful entry and hence blocks a
large area of precious cache space

• Large size cache required

Types of Name Caches (Cont’d)

• Prefix cache

• This type of name cache is used in naming systems that use the
zone-based context distribution mechanism

• In this name cache each entry consist of a name prefix and the
corresponding zone identifier

• Remember that a name prefix corresponds to a zone in the zone-
based context distribution approach

• We have discussed this method in detail earlier while discussing
distribution of contexts and name resolution mechanisms

• This type of name cache is not suitable for use with the structure-
free context distribution approach

Types of Name Caches (Cont’d)

• Full-name cache

• Each entry consist of an object’s full pathname and the identifier,
and location of its authoritative name server

• Hence, requests for accessing an object whose name is available
in the local cache can be directly sent to the object’s authoritative
server

• This type of name cache can be conveniently used with any
naming mechanism, although it is mainly used by the naming
systems that use structure-free context distribution approach

• Notice that in a prefix cache an entry usually serves as a mapping
information for several objects, but in full name cache each entry
serves as mapping information for single object

• Hence, full name caches are larger in size as compared to prefix
caches

Name Cache Implementation

• The two commonly used approaches to name cache implementation
are:

• A cache per process

• A separate name cache is maintained for each process in process’s own
address space and is usually small in size

• Accessing of cached information is fast

• No memory area of the OS is occupied by name caches

• Every new process has to create its cache from scratch as the process
oriented name cache vanishes with the process

• Caches will have short lifetime if processes are short lived

• Hit ratio low due to start-up misses, which are initial misses that occur when
a new empty cache is created

Name Cache Implementation (Cont’d)

• To alleviate problem of startup misses, use cache inheritance to give
cached data a long life time by each process inheriting its cache contents
from its parent process

• The use of process oriented cache is limited only to a single process due to
which there is a possibility that the same naming information duplicated
in several caches on same node

• A single cache for all processes of a node

• Single cache maintained at each node for all the processes of that node

• These caches are larger in size and located in memory area of the OS, thus
slower as compared to process oriented caches

• Cache information is long lived and is removed only by replacement policy
finds it suitable for being removed

Name Cache Implementation (Cont’d)

• Hence the problem of startup cache miss problem is not present with
this approach

• Higher average hit-ratio as compared to process-oriented caches, as
there will be larger collection of names in the cache at all times

• There is no duplication of naming information on the same node

• Multicache Consistency

• When a naming data update occurs, related name cache entries
become stale and must be invalidated or updated properly

• Two commonly used approaches for multicache consistency of name
caches are immediate invalidate and on-use update

Multicache Consistency

• Immediate invalidate

• All related name cache entries are immediately invalidated when a naming
data update occurs

• Two methods of doing this:

• When ever a naming data update operation is performed, an invalidate message
is broadcasted to all nodes in the system

• Each node’s name caches are then examined for the presence of the updated
data, if present the cache entry is invalidated

• Its use becomes prohibitive for big networks with large number of nodes

• To avoid the use of broadcast protocol, in the second approach, the storage node
of naming data (for example storage node of directory) keeps a list of nodes
against each data that corresponds to nodes on which data is cached

• When a storage node receives a request for a naming data update, only the
nodes in the corresponding list are notified about a naming update

Multicache Consistency (Cont’d)

• This method is acceptable only if small number of nodes share a
naming data when that data is modified and there is a low rate of
update to naming data

• On-use update

• This is more commonly used method for maintaining name cache
consistency

• No attempt is made to invalidate all related cache entries when a naming
data update occurs

• When a client uses stale data, it is informed by the naming system that
the data being used is either incorrectly specified or stale

• On receiving a negative reply, necessary steps are taken (either by
broadcasting or multicasting a request or by using some other
implementation dependent approach) to obtain updated data which is
then used to refresh the cache entry

Naming and Security

• An important job of the naming system of several centralized and
distributed operating systems is to control unauthorized access to both
named objects & information in the naming database

• Many different security mechanisms have been proposed and used by
operating systems to control unauthorized access to various resources of
the system

• Naming related access control mechanisms are three types:

• Object names as protection keys

• An object’s name acts as a protection key for the object

• Only the user who knows name of an object can access the object by using its
name

• An object can have several keys in those systems that allow an object to have
multiple names

Naming and Security (Cont’d)

• In this case any of the keys can be used to access the object

• In this mechanism, user is not allowed by the system to define a name for an
object that they are not authorized to access

• Obviously, if an user can not name an object, he or she can not operate on it

• This scheme is based on the assumption that object names can not be
forged or stolen

• i.e., there is no way for a user to obtain the name of other user’s objects and
the names can not be guessed easily

• However, in practice object names are picked to be mnemonic, they can
often be easily guessed

• Hence the scheme does not guarantee a reliable access control mechanism

• Another limitation is that it does not provide flexibility of specifying modes
of access control like read only to some and read & write to somebody else

Naming and Security (Cont’d)

• Capabilities

• A simple extension to the above scheme that overcomes its limitations

• A Capability (object identifier, Rights information) is a special type of
object identifier that contains additional information redundancy for
protection

• It can be considered as an unforgeable ticket that allows its holder o
access an object (identified by its object identifier part) in one or more
permission modes (specified by its access control information part)

• Hence the capabilities are object names having the following properties

1. A capability is a system oriented name that uniquely identifies an
object

2. In addition to identifying an object, it is also used to protect the
object it references by defining operations that may be performed on
the object it identifies

Naming and Security (Cont’d)

3. A client that possesses a capability of an object can access it in the
modes allowed by it

4. There are usually several capabilities for same object and each one
confers different access rights to its holders

• The same capability held by different users provides the same access
right to all of them

5. All clients that have capabilities to a given object can share the object

 The exact mode of sharing depends on the capability possessed by each
client of the same object

6. Capabilities are unforgeable protected objects that are maintained
by operating system and only indirectly used by the users

 Capability based protection relies on the fact that the capabilities are
never allowed to migrate into any address space directly accessible by a
user process (where they can be modified)

Naming and Security (Cont’d)

• Thus they can not be modified by user process

• If all capabilities are secure, the objects they protect are also secure against
unauthorized access

• When a process want to perform an operation on an object, it sends to
the name server a message containing the object’s capability

• It verifies the capability and allows the requested operation else
permission denied message is returned to the client process

• If allowed, the clients request is forwarded to the manager of the object

• The capability-based approach has no checking for the user identity and
if it is required, separate user authentication mechanism must be used

• Associating protection with name resolution path

• Protection can be associated either with an object or with the name
resolution path used to identify the object

Naming and Security (Cont’d)

• The most common scheme provides protection on the name resolution path

• Systems using this approach employ an Access Control List (ACL) based protection,
which controls access dependent on the identity of the user

• The mechanism based on ACL requires, in addition to the object identifier, another
trusted identifier representing the accessing principal, the entity with which access
rights are associated

• This trusted identifier might be a password, address, or any other identifier form
that cannot be forged or stolen

• An ACL is associated with an object & specifies user name & types of access
allowed for each user of that object

• Whe a user requests access to an object, the operating system checks the ACL of
that object for every access made by any user and type of access

• If the user is listed for the requested access, the access granted

Naming and Security (Cont’d)

• Otherwise, a protection violation occurs and the user job is denied access
to the object

• By associating an ACL with each context (directory) of the name space,
access can be controlled to both the named objects and the information
in the naming database

• To access an object, user must be having access permission to both
directories of object’s pathname & object itself

• Hence associating protection with the name resolution path of an object
name provides additional layer of protection to the named object

• Also, in systems where objects have multiple pathnames (such as acyclic
or general graphs), a given user may have different access rights to an
object depending on the pathname used

Lecture 48
DCE Directory Structure

Distributed Computing

DCE Directory Service

• As a case study of how the naming concepts and mechanisms described
till now can be used to build a naming system for a DCS, the DCE
directory service is discussed in brief

• In DCE system all users, machines, and resources etc that have a
common purpose and share common services are grouped into cells

• Components of DCE Directory service for intracell and intercell naming:

• Cell Directory Service (CDS)

• Controls intracell naming environment and every cell has at least one CDS server

• Global Directory Service (GDS)

• It Controls global naming environment between cells

• It links cells together so that any cell can be located from any other cell

DCE Name Space

• GDS implementation is based on international standard X.500
directory service

• Since many DCE users use the Internet, DCE also supports standard
Internet Domain Name System (DNS) for cell naming

• Hence DCE names can also be specified in DNS notation

• DCE uses Single global namespace approach for object naming

/…

GDS namespace for cells DNS namespace for cells

Internal namespace cell 1 Internal namespace cell n

DCE Name Space (Cont’d)

• DCE name space is a single worldwide structure, with global root (/…), below
which appears GDS name space, used to name each cell

• Each name is unique and has different parts and separated by slash(/)

• Prefix (Indicates whether the name is local to current cell or global to the
entire DCE name space the prefix (/.:) is used for local name and /… is used
to denote for global name

• Cell Name: This is an optional part specified only when the prefix /… is used
for the first part of the name

• This part of the name can be specified either in X.500 notation or in DNS notation

• A global name should contain this part, whereas a local name must not contain this part

• Local name: uniquely Defines an object within a cell

• Unix like hierarchical naming scheme is used for local names

X.500 Notation

• It uses hierarchical, attribute based naming scheme e.g.

/country=US/OrgType=COM/OrgName=IBM/Dept=ENG/Person=Nancy/

• Which uniquely identifies a person named Nancy who belongs to
the engineering department of the company named IBM in U.S.A

• In X.500 terminology each component of a name is called the
relative distinguished name (RDN) and the full name is called
distinguished name (DN)

• It also provides aliasing similar to the symbolic link in file system

• The X.500 name tree is called Directory Information Tree (DIT) and
the entire directory structure is including the data associated with
the nodes is called Directory Information Base (DIB)

X.500 Notation (Cont’d)

• X. 500 uses an object oriented information model for grouping DIB
entries into classes

• Each DIB entry has an ObjectClass attribute that determines the class of
the object to which the entry refers.

• e.g., in the example Country, OrgType, OrgName, Dept and Person are all
examples of values of ObjectClass attribute

• The definition of a class determines which attributes are mandatory, and
which are optional for entries in the given class

• The ObjectClass attributes are always mandatory, whose value must be
name of one or more classes

• If the ObjectClass attribute of an object has two or more values, that
object inherits the mandatory and optional attributes of each of the
corresponding classes

The DNS Notation

• The DNS is the standard scheme for naming hosts and other
resources on the internet

• It uses a hierarchical, tree structured name space partitioned into
domains

• In this scheme, a name consists of one or more strings called
labels separated by the delimiter “.” and there is no delimiter in
the beginning or end of a name

• Names are written with the highest level domain on the right

• The internet DNS name space is partitioned both organizationally
and according to geography

• It divides the world into top-level domains consisting of country
names

The DNS Notation (Cont’d)

• e.g. us (United states) which is the default and hence omitted, uk
(United Kingdom), fr (France), in (India) and so on

• Individual countries have their own next level of domains of the
name space tree

• e.g. edu stands for education, com (commercial), gov
(government) , mil (military) etc

• The organizational domains further have subdomains such
irctc.co.in, google.co.in etc.

• There are registration authorities responsible for the registration
of names in a domain at a particular are different

• e.g. google.co.in has be agreed upon by the authority who
manage the domain co.in

Intracell Naming

• All names within a cell managed by Cell Directory Service (CDS)

• CDS Directories

• The CDS of a cell basically manages the CDS directories of a cell that are
organized in hierarchical tree structure

• Manages names & attributes of all objects within the cell

• Each directory has a number of directory entries

• Each entry has a name, a set of attributes & protection information

• The server managing the object also manages its protection information

• Permission to access a directory does not imply permission to access the
named object

• The server knows which user have what type of access rights for an object

Intracell Naming (Cont’d)

• Replication of naming information

• For better performance and reliability CDS supports with replication of its
information with the unit of replication being a directory

• A collection of directories forms a clearinghouse

• A clearinghouse is a physical database managed by a CDS server

• Every DCE cell must run at least one CDS server, most will run two or more
with critical information replicated among them

• Each CDS server maintains one or more clearinghouse

• Each replica of a directory resides in different clearinghouse

• The root directory is replicated in all clearinghouses to allow a search for any
name to be begun by any CDS server

Intracell Naming (Cont’d)

• When a new directory is created, it automatically creates an entry for this
directory in its parent directory

• This entry is used to track the location of a child directory even when the
parent and child directories are located in different clearinghouses

• The root directory contains entries for all its children directories

• They in turn contain entries for their own children directories and so on

• Hence given the root directory, this connectivity enables CDS server to find
every directory and thus every entry in the name space

• Consistency of Replicated Naming Information

• To maintain consistency of the naming information, DCE uses primary-copy
protocol for directory update operations

• That is for each replicated directory one copy is designated as primary copy
and the remaining as secondary copies

Intracell Naming (Cont’d)

• Read operations can be performed using any copy of a replicated
directory, primary or secondary

• All update operations are directly performed only on the primary
copy

• One of the following two approaches are used to update the
secondary copies

• Update propagation: In this method, when the primary copy of a
directory is updated, changes are immediately sent to all the
secondary copies, like for example naming information which need to
be kept consistent at all times

• Skulking: In this method, less critical updates are accumulated and
sent together as a single message to secondary copies periodically

CDS Implementation

• CDS implementation uses client – server model with CDS server daemon and
client daemon processes

• A CDS server running on server machine stores and manages one or more
clearing houses and handles requests to create, modify or look up names in its
local clearinghouse

• The client or CDS clerk runs on every client machine that uses CDS

• The CDS clerk receives requests from client application and interacts with one or
more CDS servers to carry out the request and return the result to the client
application

• A CDS clerk also maintains a name cache in which it saves the results of name
resolution requests for future use

• The cache is written periodically to the disk, so that the information can survive
a system reboot or application restart

How does the CDS Clerks learn about CDS Servers

1. By broadcasting: CDS servers periodically broadcast their existence

• CDS clerks learn about all about those CDS servers resident on the same LAN
as that of CDS clerk

2. During a name resolution: If local CDS server can not resolve a name
with the information in its local clearinghouse, it returns location of
another CDS server that has more information about resolving the
given name

3. By management command: A DCE administrator can use a CDS control
program to create information about a CDS server in CDS clerk’s cache

• This is normally used when CDS clerk and CDS server reside in different LANs
so that broadcast messages sent by the CDS server on its own LAN cannot be
received by the CDS clerk on different LAN

Name Resolution

• A name resolution operation called lookup in CDS is performed as shown
in the figure below

1. The client application sends a lookup request to its local CDS clerk in an
RPC message

2. If the name is found in the name cache it returns a reply to client and the
name resolution is complete

3. If the name not in the cache, CDS clerk does an RPC with a CDS server it
knows about

4. With the directories available in its local clearinghouse, the CDS server
tries to resolve as many components of the name as possible

5. If the name can be completely resolved, the CDS server returns the result
of the name resolution to the CDS clerk

6. The CDS clerk caches this information in the name cache for future use

Name Resolution (Cont’d)

7. The CDS clerk returns a reply to client and resolution is complete

• If the result can only be partially resolved by the contacted CDS server in
step 4; it returns partially resolved result and another CDS server
location

• The process will iteratively continue until the name is resolved fully

• CDS server does only name resolution and not object accessing
operation to be done separately by the client using RPC with server that
manages the named object

Client application CDS clerk CDS Server

Name Cache Clearing House

1

2

3

4
5

6
7

Client machine Server machine

Intercell Naming in DCE

• CDS clerks must have a way to locate CDS servers in another cell to
access an object belonging to it

• Either GDS(Global Directory Service) or DNS(Domain name system)
notation might be used for naming and these two name spaces map a
cell name to CDS server in that cell

• Global Directory Agent (GDA) exists in any cell that needs to
communicate with other cells, which may exist on the same machine as
CDS server or on an independent machine

• CDS servers of a cell have information about the GDA location

• The fig. in the next slide shows the steps involved in how the intercell
name resolution is done

• A cell may have more than one GDA for increased availability and
reliability

Client application CDS clerk CDS Server

Name Cache

1

2

3 5

6 8

CDS Server GDA

DNS ServerGDS Server

Client Machine

4 9
10

11
12

13

68

DB of GDS name
Space for cell names

DB of DNS name
Space for cell names

7 7

GDS Machine DNS Machine

Intercell Naming in DCE (Cont’d)

1. A client Application sends a lookup RPC request to CDS clerk

2. CDS clerk checks it cache for the name; if found returns the reply to
the client and operation is complete

3. If not, the CDS clerk does and RPC with a CDS server asking for the
location of GDA

4. The CDS server returns the location of the GDA to the CDS clerk

5. The CDS clerk then does an RPC with the GDA, sending the cell name
embedded in the name to be resolved

6. The GDA checks to see which notation has been used in the cell name

• If X.500 notation, GDA does an RPC with GDS server; else if it is DNS
notation, the GDA does an RPC with DNS server

7. The GDS server or DNS server lookup the cell name in their database

Intercell Naming in DCE (Cont’d)

8. It returns to the GDA, the address of CDS server in the named cell

9. The GDS forwards the information to CDS clerk

10. The CDS clerk now uses this information to send the name lookup
request to the CDS server of the cell to which the named object
belongs

• CDS server resolves name using the directories in its clearinghouse

• If it cannot resolve the name completely, then iterative approach is
used

11. CDS server returns the result of the name resolution to the CDS
clerk

12. The CDS clerk caches the information in its cache for future use

13. The CDS clerk finally returns a reply to the client and the name
resolution operation is complete

User Interface to the DCE Directory Service

• Browsing interface:

• For users with least privilege for the naming information

• It allows the users to only view the content and structure of cell directories
with only those directories to which he has read permission

• XDS application interface:

• Users can create, modify and delete directory entries using XDS (X/Open
Directory Server) Application program interface to write an application that
makes direct calls to DCE Directory Service

• Administrative Interface:

• For users with maximum privilege to naming information

• It allows administrators to configure or reconfigure the naming information
within the system including the distribution and replication of various
directories in the clearinghouses of CDS servers

Assignment - 3

• What are desirable features of a DFS? How are they implemented
in AFS?

• Describe architecture of NFS in detail. What are different
protocols used by NFS & how are they implemented?

• Short note - Block Caching, Stable storage, File model, NFS vs AFS

• Enumerate various approaches for generating system oriented
names

• Discuss the concept of partitioning namespace by clustering
conditions and describe the different clustering condition
methods with appropriate examples

• Short note on: Namespace, Name cache DCE Directory service

