
Master Pages
• A Master Page enables you to share the same content among
multiple content pages in a website.

• Use a Master Page to create a common page layout.

• For example, if you want all the pages in your website to share a
three column layout, you can create the layout once in a Master

Page and apply the layout to multiple content pages.

Creating Master Page
• You create a Master Page by creating a file that ends with the
.master extension.

• Creating SimpleMaster.master

Master Pages
<%@ Master Language=”C#” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >

<head id=”Head1” runat=”server”>
<style type=”text/css”>
html
{

background-color:silver;
font:14px Arial,Sans-Serif;

}
.content
{

margin:auto;
width:700px;
background-color:white;
border:Solid 1px black;

}

Master Pages
.leftColumn
{

float:left;
padding:5px;
width:200px;
border-right:Solid 1px black;
height:700px;

}
.rightColumn
{

float:left;
padding:5px;

}
.clear
{

clear:both;
}

Master Pages
</style>

<title>Simple Master</title>

</head>

<body>

<form id=”form1” runat=”server”>

<div class=”content”>

<div class=”leftColumn”>

<asp:contentplaceholder

id=”ContentPlaceHolder1” runat=”server”/>

</div>

Master Pages
<div class=”rightColumn”>

<asp:contentplaceholder

id=”ContentPlaceHolder2” runat=”server”/>

</div>

<br class=”clear” />

</div>

</form>

</body>

</html>

Master Pages
Two special things about master pages are:

• The file contains a <%@ Master %> directive instead of the normal
<%@ Page %> directive.

• Second, the Master Page includes two ContentPlaceHolder
controls.

• You can add as many ContentPlaceHolders to a Master Page as you
need.

Using Master Page in .aspx page
SimplePage.aspx
<%@ Page Language=”C#” MasterPageFile=”~/SimpleMaster.master” %>
<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>

Content in the first column

Content in the first column

Content in the first column

Content in the first column

Content in the first column

</asp:Content>
<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder2”
Runat=”Server”>

Content in the second column

Content in the second column

Content in the second column

Content in the second column

Content in the second column

</asp:Content>

Master Pages
• The Master Page is associated with the content page through the
MasterPageFile attribute included in the <%@ Page %> directive.

• This attribute contains the virtual path to a Master Page.

• All the content contained in the content page must be added with
Content controls.

• The Content control includes a ContentPlaceHolderID property. This
property points to the ID of a ContentPlaceHolder control contained
in the Master Page.

Master Pages
• Displaying default content using Master Pages.

Master Pages
• Displaying default content using Master Pages.

• Nesting of Master Pages.

Themes and Skin files
• An ASP.NET Theme enables you to apply a consistent style to the
pages in your website.

• You can use a Theme to control the appearance of both the HTML
elements and ASP.NET controls that appear in a page.

• Themes are different than Master Pages. A Master Page enables
you to share content across multiple pages in a website. A Theme,
on the other hand, enables you to control the appearance of the
content.

Creating Themes and Skins
• You create a Theme by adding a new folder to a special folder
named App_Themes in your application.

• Each folder that you add to the App_Themes folder represents a
different Theme.

• If the App_Themes folder doesn’t exist in your application, you can
create it. It must be located in the root of your application.

• The most important types of files in a Theme folder:

Skin Files

Cascading Style Sheet Files

Adding Skins to Themes
• A Theme can contain one or more Skin files.

• A Skin enables you to modify any of the properties of an ASP.NET
control that have an effect on its appearance.

• For example, imagine that you decide that you want every TextBox
control in your web application to appear with a yellow background
color and a dotted border.

• For this let us create a theme folder SimpleTheme in AppThemes
Folder.

• And to modify the appearance of all TextBox controls in all pages
that use the Simple Theme create a skin file TextBox.skin as shown
below.

• (You can name a skin file anything that you want)

Adding Skins
SimpleTheme \TextBox.skin

<asp:TextBox BackColor=”Yellow” BorderStyle=”Dotted”

Runat=”Server” />

A Theme folder can contain Skin file that contains Skins for hundreds
of controls.

A single Skin file can contain Skins for hundreds of controls.

To apply the theme to a particular page use Theme Property of Page
Directive :

<%@ Page Language=”C#” Theme=”SimpleTheme” %>

Creating Named Skins
• In the previous example, we created something called a Default
Skin. A Default Skin is applied to every instance of a control of a
certain type.

• When you create a Named Skin, you can decide when you want to
apply the Skin.

• To create a named skin you define a SkinId in the skin file.

• A Theme can contain only one Default Skin for each type of control.
However, a Theme can contain as many Named Skins as you want.

• Each Named Skin must have a unique name.

Example:

Here in the next example we have both default and named skins:

Themes and Skin files
<asp:TextBox SkinID=”DashedTextBox” BorderStyle=”Dashed”

BorderWidth=”5px” Runat=”Server” />

<asp:TextBox BorderStyle=”Double” BorderWidth=”5px”

Runat=”Server” />

Applying named skin to the .aspx page
ShowNamedSkin.aspx

<%@ Page Language=”C#” Theme=”SimpleTheme” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>

<title>Show Named Skin</title>

</head>

Themes and Skin files
<body>

<form id=”form1” runat=”server”>

<div>

<asp:TextBox id=”txtFirstName” SkinID=”DashedTextBox”

Runat=”server” />

<asp:TextBox id=”txtLastName” Runat=”server” />

</div>

</form>

</body>

</html>

Themes and Skin files
• The above page contains two TextBox controls. The first TextBox
control includes a SkinID attribute. This attribute causes the Named
Skin to be applied to the control.

• The second TextBox, on the other hand, does not include a SkinID
property. The Default Skin is applied to the second TextBox control.

Thanks

