Table 7.7 Reduced Cost Table 2

Machinist	Job				
	1	2	3	4	5
A	7	0	0	0	4
B	6	4	5	0	3
C	4	2	3	0	0
D	$\overline{0}$	2	5	0	0
E	2	3	2	0	2

Since the number of lines covering all zeros is less than the number of columns/ rows, we modify the Table 7.7. The least of the uncovered cell values is 2 . This value would be subtracted from each of the uncovered values and added to each value lying at the intersection of lines (corresponding to cells A-4, D-4, A-5 and D-5). Accordingly, the new table would appear as shown in Table 7.8.

Iteration 3

Table 7.8 Reduced Cost Table 3

Machinist	Job				
	1	2	3	4	5
A	7	0	¢	2	6
B	4	2	3	0	3
C	2	¢	1	\%	0
D	0	2	5	2	2
E	\%	1	0	Q	2

The optimal assignments can be made as the least number of lines covering all zeros in Table 7.8 equals 5 . Considering rows and columns, the assignments can be made in the following order :
i) Select the second row, Assign machinist B to job 4. Cross out zeros at cells C-4 and E-4.
ii) Consider row 4. Assign machinist D to job 1. Cancel the zero at cell E-1.
iii) Since there is a single zero in the fifth row, put machinist E to job 3 and cross out the zero at
iv) There being only a ingle zero left in each of the first and third rows, we assign job 2 to machinist A and job 5 to C.

The total cost associated with the optimal machinist job assignment pattern A-2, B-4, C-5, D-1 and E-3 is $3+2+4+39=21$.

7.4 CHECK YOUR PROGRESS

1. What is an assignment problem? Give two applications.
2. Give the mathematical formulation of an assignment problem. How does it differ from a transportation problem?
3. Explain the conceptual justification that an assignment problem can be viewed as a linear programming problem.
4. Explain the difference between a transportation problem and an assignment problem.
5. State and discuss the methods for solving an assignment problem. How is the Hungarian method better than other methods for solving an assignment problem?
6. Solve the following assignment problem by (a) enumeration method, and (b) Hungarian assignment method.

Worker	Job 1	Job 2	Job 3
A	4	2	7
B	8	5	3
C	4	5	6

7. ABC Company is engaged in manufacturing 5 brands of packed snacks. It has five manufacturing setups, each capable of manufacturing any of its brands one at a time. The costs to make a brand on these setups vary according to the following table.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
$\mathrm{~B}_{1}$	4	6	7	5	11
$\mathrm{~B}_{2}$	7	3	6	9	5
$\mathrm{~B}_{3}$	8	5	4	6	9
$\mathrm{~B}_{4}$	9	12	7	11	10
$\mathrm{~B}_{5}$	7	5	9	8	11

Assuming five setups are $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5} and five brands are $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5}. Find the optimum assignment of products on these setups resulting in the minimum cost.
8. Five employees of a company are to be assigned to five jobs which can be done by any of them. Because of different number of years with the firm, the workers get different wages per hour. These are : Rs. 15 per hour fov A, B and C each, and Rs. 13 per hour for D and E each. The amount of time taken (in hours) by each employee to do a given job is given in the following table. Determine the assignment pattern that (a)
minimizes the total time taken, and (b) minimizes the total cost of getting five units of work done.

Job	Employee				
	A	B	C	D	E
1	7	9	3	3	2
2	6	1	6	6	5
3	3	4	9	10	7
4	1	5	2	2	4
5	6	6	9	4	2

9. A departmental head has four subordinates and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. His estimates of the times that each man would take to perform each task is given below in the matrix :

Tasks

		I	II	III	IV
	A	8	26	17	11
	B	13	28	4	26
Subordinates	C	38	19	18	15
	D	19	26	24	10

How should the tasks be allocated to subordinates so as to minimize the total man-hours?
10. An automobile dealer wishes to put four repairmen to four different jobs. The repairmen have somewhat different kinds of skills and they exhibit different levels of efficiency from one job to another. The dealer has estimated the number of man-hours that would be required for each job-man combination. This is given in matrix form in the following table :

			B	C	D
Men	1	5	3	2	8
	2	7	9	2	6
	3	6	4	5	7
	4	5	7	7	8

Find the optimal assignment that will result in minimum man-hours needed.

7.5 ADDITIONAL PROBLEMS

Example 7.3
Solve the following unbalanced assignment problem of minimizing total time for doing all the jobs

Operator	Job				
	1	2	3	4	5
1	6	2	5	2	6
2	2	5	8	7	7
3	7	8	6	9	8
4	6	2	3	4	5
5	9	3	8	9	7
6	4	7	4	6	8

Solution

Since the number of operators is unequal to the number of jobs, a dummy job is created. The time consumed by any operator for the dummy job is 0 .

Operator	Job						
	1	2	3	4	5	6	
1	6	2	5	2	6	0	
2	2	5	8	7	7	0	
3	7	8	6	9	8	0	
4	6	2	3	4	5	0	
5	9	3	8	9	7	0	
6	4	7	4	6	8	0	

Subtracting the smallest value in each column from all the values of that column drawing minimum number of lines to cover all zeros we have:

We find that no more than four lines are needed to cover all zeros, which is not equal to number of assignments. We note that all rows contain at least one zero, and 1 is the smallest value not covered by a line. Subtracting 1 from every uncovered value and adding 1 to every value at the intersection of two lines, we find

	1	2	3	4	5	6
1	4	0	2	0	1	1
2	0	3	5	5	2	1
3		5	2	6	2	0
4	4	0	0	2	0	1
5	6	0	4	6	1	0
6	1	4	0	3	2	0

Drawing minimum number of lines to cover all zeros, we find

	1	2	3	4	5	6
1	4	0	2	0	1	1
2	0	3	5	5	2	1
3	4	5	2	6	2	0
4	4	0	0	2	0	1
5	6	0	4	6	1	0
6	1	4	0	3	2	0

Now the minimal number of lines is equal the number of assignments that can be made. Optimal assignment can be made by sciecting one zero in each row so that no two selected zeros are in the same column.

	1	2	3	4	5	6
1	4	0	2	0	1	1
2	0	3	5	5	2	1
3	4	5	2	6	2	0
4	4	0	0	2	0	1
5	6	0	4	6	1	0
6	1	4	0	3	2	0

Thus the optimal assignment is
Operator 1 to job 4, Operator 2 to job 1, Operator 3 to dummy 6 Operator 4 to job 5, Operator 5 to job 2, Operator 6 to job 3
Time $=2+2+0+5+3+4=16$ units.

Example 7.4

A solicitors' firm employs typists on hourly piece-rate basis for their daily work. There are five typists for service and their charges and speeds are different. According to an earlier understanding only one job is given to one typist and the typist is paid for full hours even if he works for a fraction of an hour. Find the least cost allocation for the following.

Typist	Rate per hour (Rs.)	No. of pages Typed hour	Job	No. of pages
A	5	12	P	199
B	6	14	Q	175
C	3	8	R	145
D		10	S	298
E	4	11	T	178

Solution

The following matrix gives the cost incurred if the ith typist ($\mathrm{i}=$ A,B,C,D,E) executes the $j^{\text {th }}$ job ($\mathrm{j}=\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$)
$\begin{array}{llllllll}\text { Typist } & \text { P } & \text { Q } & \text { Job } & \text { R } & \text { S } & \text { T }\end{array}$

	85	75	65	125	75
B	90	78	66	132	78
C	75	66	57	114	69
D	80	72	60	120	72
E	76	64	56	112	68

Subtracting the minimum element of each row from all its elements in turn matrix reduces to

Typist	P	Q	Job	R	S
				T	
A	20	10	0	60	10
B	24	2	0	66	12
C	18	9	0	57	12
D	12	0	60	12	
E	20	12	0	56	12

Now subtract the minimum element of each column from all its elements in turn, of matrix reduces to :

Typist	P	Q	Job	R	S	T
A	2	2		0	4	0
B	6	4		0	10	
C	0	1		0	1	
D	2	4		0	4	2
E	2	0		0		2

Since there are only 4 lines (<5) to coyer all zeros, optimal assignment cannot be made. The minimum uncovered element is 2 .

We subtract the value 2 from all uncovered elements, add this value to all junction values and leave the other elements undisturbed. The revised matrix looks as

Job

Typist	P	Q	R	S	T
	2	2	2	4	0
B	4	2	0	8	ϕ
C	0	1	2	1	2
D	0	2	0	2	ϕ
E Z	0	2	0	2	

Since the minimum no. of lines required to cover all the zeros is only $4(<5)$, optimal assignment cannot be made at this stage also.

The minimum uncovered element is 1 . Repeating the usual process again, we get the following matrix :

Job

Since the minimum number of lines to cover all zero is equal to 5 , this matrix will given optimal solution. The optimal assignment is made in the matrix below.

Typist	P	Q
A	2	1
B	4	1
C	W	0
D	0	1
E	3	

Job

R	S
2	3
0	7
2	$\not 2$
$\not 2$	1
3	0

0
0
\neq
2
\neq
3

Thus typist A is given Job Thus typist B is given Job Thus typist C is given Job Thus typist D is given Job Thus typist E is given Job

Note : In this case the above solution is not unique. Alternate solution also exists.

Example 7.5

To stimulate interest and provide an atmosphere for intellectual discussion, a finance faculty in a management school decides to hold special seminars on four contemporary topics leasing, portfolio management, private mutual funds, swaps and options. Such seminars should be held once per week in the afternoons. However, scheduling these seminars (one for each topic, and not more than one seminar per afternoon) has to be done carefully so that the number of students unable to attend is kept to a minimum. A careful study indicates that the number of students who cannot attend a particular seminar on a specific day is as follows :

	Leasing	Portfolio Management	Private Mutual funds	Swaps and Options
Monday	50	40	60	20
Tuesday	40	30	40	30
Wednesday	60	20	30	20
Thursday	30	30	20	30
Friday	10	20	10	30

Find an optimal schedule of the seminars. Also find out the total number of students who will be missing at least one seminar.

Solution

This is an unbalanced minimization assignment problem.
We first of all balance it by adding a dummy topic.

	Leasing	Portfolio Management	Private Mutual funds	Swaps and Options	Dummy
Monday	50	40	60	20	0
Tuesday	40	30	40	30	0
Wednesday	60	20	30	20	0
Thursday	30	30	20	30	0
Friday	10	20	10	30	0

Subtracting the minimum element of each column from all elements of that column, we get the following matrix :

	Leasing	Portfolio Management	Private Mutual funds	Swaps and Options	Dummy
Monday	40	20	50	0	0
Tuesday	30	10	30	10	0
Wednesday	50	0	20	0	0
Thursday	20	10	10	10	0
Friday	0	0	0	10	0

The minimum number of lines to cover all zeros is 4 which is less than the order of the square matrix (i.e.5), the above matrix will not give the optimal solution, Subtract the minimum uncovered element ($=10$) from all uncovered elements and add it to the elements lying on the intersection of two lines, we get the following matrix.

	Leasing	Portfolio Management	Private Mutual funds	Swaps and Options	Dummy
Monday	30	20	40	0	0
Tuesday	20	10	20	10	\emptyset
Wednesday	40	0	10	0	0
Thursday	10	10	0	10	0
Friday	0	10	0	20	10

Since the minimum number of lines to cover all zeros is 5 which is equal to the order to the matrix, the above matrix will give the optimal solution which is given below :

Leasing \begin{tabular}{ccccc}
Portfolio

Management

Private

Mutual

funds

\quad

Swaps

and

Options
\end{tabular}\quad Dummy

Monday	30	20	40	0	0
Tuesday	20	10	20	10	0
Wednesday	40	0	10	0	0
Thursday	10	1	0		10
Friday	0	90	0	20	10

And the optimal schedule is

Monday	$:$	Swaps and options	20
Tuesday	$:$	No seminar	0
Wednesday	$:$	Portfolio Management	20
Thursday	$:$	Pvt. mutual funds	20
Friday	$:$	leasing	$\underline{10}$
			$\underline{70}$

Thus, the total number of students who will be missing at least one seminar $=70$

Example 7.6

Four operators O_{1}, O_{2}, O_{3} and O_{4} are available to a manager who has to get four jobs J_{1}, J_{2}, J_{3} and J_{4} done by assigning one job to each Given the times needed by different operators for different jobs in the matrix below

	J_{1}	J_{2}	J_{3}	J_{4}
O_{1}	12	10	10	8
O_{2}	14	12	15	11
O_{3}	6	10	16	4
O_{4}	8	10	9	7

i) How should the manager assign the jobs so that the total time needed for all four jobs is minimum?
ii) If job J_{2} is not to be assigned to operator O_{2} what should be the assignment how much additional total time will be required?

Solution

i) This is an assignment problem whose objective is to assign one job to one operator so that total time needed for all four jobs is minimum. To determine appropriate assign of jobs and operators, let us apply the assignment algorithm. Subtract the minimum element of each row from all elements of that row to get the following matrix :

Operators	J_{1}	J_{2}	J_{3}	J_{4}
O_{1}	4	2	2	0
O_{2}	3	1	4	0
O_{3}	2	6	12	0
O_{4}	1	3	2	0

Now subtract the minimum element of each column from all elements of that column

Operators Job	J_{1}	J_{2}	J_{3}	J_{4}
O_{1}	3	1	0	0
O_{2}	2	0	2	0
O_{3}	1	5	10	0
O_{4}	0	2	0	0

The minimum number of lines drawn to cover all zeros is equal to 4. Since the number of lines drawn viz., 4 is equal to the number of jobs or the number of operators, so we proceed for making the optimal

The optimal assignment is made as below :
Job
J_{1}
J_{2}
J_{3}

Operators

