educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
Chapter 8
JDBC

8.1 Introduction

8.2 Design of JDBC

8.3 JDBC configuration

8.4 Executing SQL statement And Query Execution
8.5 Scrollable and updatable result sets

8.6 row sets

8.7 metadata

8.8 Transaction

8.1 Introduction

JDBC is a Java standard that provides the interface for connecting from Java to
relational databases. The JDBC standard is defined by Sun Microsystems and
implemented through the standard java.sqgl interfaces. This allows individual
providers to implement and extend the standard with their own JDBC drivers.

JDBC stands for

Java Database Connectivity, which is a standard Java API for database

-independent connectivity between the Java programming language and a wide range of
databases.

The JDBC library includes APlIs for each of the tasks commonly associated with
database usage:

® Making a connection to a database

® Creating SQL or MySQL statements

® Executing that SQL or MySQL queries in the database
® Viewing & Modifying the resulting records

JDBC APl is a Java API that can access any kind of tabular data, especially data stored
in a Relational Database. JDBC works with Java on a variety of platforms, such as
Windows, Mac OS, and the various versions of UNIX.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

8.2 Design Of JDBC

Just as Java was designed to provide platform independence from hardware/software
platforms, so too JDBC has been designed to provide some degree of database
independence for developers. JDBC is designed to provide a database-neutral API for
accessing relational databases from different vendors. Just as a Java application does not
need to be aware of the operating system platform on which it is running, so too JDBC has
been designed so that the database application can use the same methods to access data
regardless of the underlying database product.

JDBC was developed to work with the most common type of database: the relational
database. This is not to say that JDBC cannot be used with another type of database. In
fact, there are JDBC drivers that allow the API to be used to connect to both high-end,
mainframe databases, which are not relational, and to access flat files and spreadsheets as
databases (which are definitely not relational). But the reality is that JDBC is most commonly
used with relational databases.

The technical definition of a relational database is a database that stores data as a collection
of related entities. These entities are composed of attributes that describe the entity, and
each entity has a collection of rows. Another way to think about a relational database is that
it stores information on real-world objects (the entities). The information about the objects is
contained in the attributes for the object.

Since real world objects have some type of relation to each other, we must have a facility for
expressing relations between the objects in the database. The relationships between the
database objects is described using a query language, the most popular of which is the
Structured Query Language (SQL).

JavaSoft's JDBC consists of two layers: the JDBC API and the JDBC Driver Manager API.

The JDBC APl is the top layer and is the programming interface in Java to structured query
language (SQL) which is the standard for accessing relational databases.

The JDBC API| communicates with the JDBC Driver Manager API, sending it various SQL
statements. The manager communicates (transparent to the programmer) with the various
third party drivers (provided by Database vendors like Oracle) that actually connect to the

database and return the information from the query.

JDBC Architecture:

The JDBC API supports both two-tier and three-tier processing models for database access
but in general JDBC Architecture consists of two layers:

JDBC API: This provides the application-to-JDBC Manager connection.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent
connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data
source. The driver manager is capable of supporting multiple concurrent drivers connected
to multiple heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager with
respect to the JDBC drivers and the Java application:

Java Application
L
JDBC API
|
 JDBC Driver |
1
[[JDBC Driver

Fig. Architectural diagram
Common JDBC Components:

The JDBC API provides the following interfaces and classes:

o DriverManager: This class manages a list of database drivers. Matches connection
requests from the java application with the proper database driver using
communication subprotocol. The first driver that recognizes a certain subprotocol
under JDBC will be used to establish a database Connection.

o Driver: This interface handles the communications with the database server. You
will interact directly with Driver objects very rarely. Instead, you use DriverManager

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
objects, which manages objects of this type. It also abstracts the details associated
with working with Driver objects

o Connection : This interface with all methods for contacting a database. The
connection object represents communication context, i.e., all communication with
database is through connection object only.

o Statement : You use objects created from this interface to submit the SQL
statements to the database. Some derived interfaces accept parameters in addition
to executing stored procedures.

o ResultSet: These objects hold data retrieved from a database after you execute an
SQL query using Statement objects. It acts as an iterator to allow you to move
through its data.

e SQLException: This class handles any errors that occur in a database application.

8.3 JDBC configuration

8.3.1 What is JDBC Driver ?

JDBC drivers implement the defined interfaces in the JDBC API for interacting with your
database server.

For example, using JDBC drivers enable you to open database connections and to
interact with it by sending SQL or database commands then receiving results with Java.

The Java.sqgl package that ships with JDK contains various classes with their
behaviours defined and their actual implementaions are done in third-party drivers.
Third party vendors implements the java. sgl. Driver interface in their database
driver.

8.3.2 JDBC Drivers Types:

JDBC driver implementations vary because of the wide variety of operating systems and
hardware platforms in which Java operates. Sun has divided the implementation types
into four categories, Types 1, 2, 3, and 4, which is explained below:

Type 1: JDBC-ODBC Bridge Driver:

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each
client machine. Using ODBC requires configuring on your system a Data Source Name
(DSN) that represents the target database.

When Java first came out, this was a useful driver because most databases only
supported ODBC access but now this type of driver is recommended only for
experimental use or when no other alternative is available.

The JDBC-ODBC bridge that comes with JDK 1.2 is a good example of this kind of
driver.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Local Computer

|
Java Application | DB :
| Vendor
Application Code] Driver

Type 1 ODBC
JDBC ODBC Bridge | *T™| Driver

Proprietary Vendor Network
Specific Protocol Communication

Database Server
Fig. Type 1: JDBC-ODBC Bridge Driver

Type 2: JDBC-Native API:

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls which are
unique to the database. These drivers typically provided by the database vendors and
used in the same manner as the JDBC-ODBC Bridge, the vendor-specific driver must be
installed on each client machine.

If we change the Database we have to change the native API as it is specific to a
database and they are mostly obsolete now but you may realize some speed increase
with a Type 2 driver, because it eliminates ODBC's overhead.

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Local Computer

Java Application -4— | DB Vendor Driver
Application Code
SEERL A
‘\—-‘-’
: Local
Type 2 ~ Native API DBMS
Proprietary Vendor Network
Specific Protocol Communication

Database Server
Fig. Type 2: JDBC-Native API

Type 3: JDBC-Net pure Java:

In a Type 3 driver, a three-tier approach is used to accessing databases. The JDBC
clients use standard network sockets to communicate with an middleware application
server. The socket information is then translated by the middleware application server
into the call format required by the DBMS, and forwarded to the database server.

This kind of driver is extremely flexible, since it requires no code installed on the client
and a single driver can actually provide access to multiple databases.

You can think of the application server as a JDBC "proxy," meaning that it makes calls
for the client application. As a result, you need some knowledge of the application
server's configuration in order to effectively use this driver type.

Your application server might use a Type 1, 2, or 4 driver to communicate with the
database, understanding the nuances will prove helpful.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Local Computer

Visit educlash.com for more

Java Application

Application Code

:

Type 3
JDBC — Net Pure Java

Type 4: 100% pure Java:

Middleware Server

| JDBC Type 1 Driver

JDBC Type 2 Driver

JDBC Type 4 Driver

Communication

Proprietary Vendor I Network

Specific Protocol

Database Server

Fig. Type 3: JDBC-Net pure Java

In a Type 4 driver, a pure Java-based driver that communicates directly with vendor's
database through socket connection. This is the highest performance driver available for
the database and is usually provided by the vendor itself.

This kind of driver is extremely flexible, you don't need to install special software on the
client or server. Further, these drivers can be downloaded dynamically.

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their
network protocols, database vendors usually supply type 4 drivers.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [/ CG6PA->PERCENTAGE

Visit educlash.com for more

FB/IG/TW: @educlashco

[Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Local Computer

Java Application

Application Code
i S
Type 4
100% Pure Java B Local
| DBMS
Proprietary Vendor Network
Specific Protocol Communication

Database Server

Fig. Type 4: 100% pure Java

8.3.3 Which Driver should be used?

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the
preferred driver type is 4.

If your Java application is accessing multiple types of databases at the same time, type
3 is the preferred driver.

Type 2 drivers are useful in situations where a type 3 or type 4 driver is not available yet
for your database.

The type 1 driver is not considered a deployment-level driver and is typically used for
development and testing purposes only.

After you've installed the appropriate driver, it's time to establish a database connection
using JDBC.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE f CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

The programming involved to establish a JDBC connection is fairly simple. Here are
these simple four steps:

e Import JDBC Packages: Add import statements to your Java program to import
required classes in your Java code.

e Register JDBC Driver: This step causes the JVM to load the desired driver
implementation into memory so it can fulfill your JDBC requests.

o Database URL Formulation: This is to create a properly formatted address that
points to the database to which you wish to connect.

o Create Connection Object: Finally, code a call to the DriverManager object's
getConnection() method to establish actual database connection.

8.3.4 Import JDBC Packages:

The Import statements tell the Java compiler where to find the classes you reference in
your code and are placed at the very beginning of your source code.

To use the standard JDBC package, which allows you to select, insert, update, and
delete data in SQL tables, add the following imports to your source code:

import java.sql.* ; // for standard JDBC programs
import Jjava.math.* ; // for BigDecimal and BiglInteger support

8.3.5 Register JDBC Driver:

You must register the your driver in your program before you use it. Registering the
driver is the process by which the Oracle driver's class file is loaded into memory so it
can be utilized as an implementation of the JDBC interfaces.

You need to do this registration only once in your program. You can register a driver in
one of two ways.

Approach (I) - Class.forName():

The most common approach to register a driver is to use Java's
Class.forName () method to dynamically load the driver's class file into
memory, which automatically registers it. This method is preferable

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
because it allows you to make the driver registration configurable and portable.

The following example uses Class. forName () to register the Oracle driver:

try |

Class.forName ("oracle.jdbc.driver.OracleDriver") ;

}

catch (ClassNotFoundException ex) {

System.out.println ("Error: unable to load driver class!");
System.exit (1) ;

}

You can use getInstance () method to work around noncompliant JVMs, but
then you'll have to code for two extra Exceptions as follows:

try {
Class.forName ("oracle.jdbc.driver.OracleDriver") .newInstanc
e();
}
catch (ClassNotFoundException ex) {

System.out.println ("Error: unable to load driver
class!");

System.exit (1) ;
catch(IllegalAccessException ex) {

System.out.println ("Error: access problem while
loading!");

System.exit (2) ;
catch (InstantiationException ex) {

System.out.println ("Error: unable to instantiate
driver!");

System.exit (3);
}

Approach (ll) - DriverManager.registerDriver():

The second approach you can use to register a driver is to use the static
DriverManager.registerDriver () method

You should use the registerDriver () method if you are using a non-JDK
compliant JVM, such as the one provided by Microsoft.

The following example uses registerDriver () to register the Oracle driver:

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
try {
Driver myDriver = new oracle.jdbc.driver.OracleDriver();
DriverManager.registerDriver (myDriver);
}
catch (ClassNotFoundException ex) {
System.out.println ("Error: unable to load driver class!");
System.exit (1) ;
}

8.3.6 Database URL Formulation:

After you've loaded the driver, you can establish a connection using the
DriverManager.getConnection () method. For easy reference, let me list the
three overloaded DriverManager.getConnection () methods:

e getConnection (String url)
e getConnection(String url, Properties prop)

e getConnection(String url, String user, String password)

Here each form requires a database URL. A database URL is an address that points to
your database.

Formulating a database URL is where most of the problems associated with establishing
a connection occur.

Following table lists down popular JDBC driver names and database URL.

RDBMS JDBC driver name URL format

MySQL |com.mysql.jdbc.Driver jdbc:mysql://hostname/ databaseName

ORACLE |oracle.jdbc.driver.OracleDriver |disgaracle:thin:@hostname:port

Number:databaseName

COM.ibm.db2.jdbc.net.DB2Driver |jdbc:db2:hostname:port Number/databaseName

Sybase |com.sybase.jdbc.SybDriver

jdbc:sybase:Tds:hostname: port
Number/databaseName

All the highlighted part in URL format is static and you need to change only remaining
part as per your database setup.

8.3.7 Create Connection Object:

Using a database URL with a username and password:

| listed down three forms of DriverManager.getConnection () method to create a

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more
connection object. The most commonly used form of getConnection () requires you
to pass a database URL, a username, and a password.

Assuming you are using Oracle's thin driver, you'll specify a
host:port:databaseName value for the database portion of the URL.

If you have a host at TCP/IP address 192.0.0.1 with a host name of amrood, and your
Oracle listener is configured to listen on port 1521, and your database name is EMP,
then complete database URL would then be:

jdbc:oracle:thin:@amrood:1521:EMP

Now you have to call getConnection () method with appropriate username and
password to get a Connection object as follows:

String URL = "jdbc:oracle:thin:W@amrood:1521:EMP";

String USER = "username";

String PASS = "password"

Connection conn = DriverManager.getConnection (URL, USER, PASS);

Using only a database URL:

A second form of the DriverManager.getConnection () method requires only a
database URL:

DriverManager.getConnection(String url) ;

However, in this case, the database URL includes the username and password and has
the following general form:

jdbc:oracle:driver:username/password@database

So the above connection can be created as follows:

String URL =
"jdbc:oracle:thin:username/password@amrood:1521:EMP";
Connection conn = DriverManager.getConnection (URL) ;

Using a database URL and a Properties object:

A third form of the DriverManager.getConnection() method requires a database
URL and a Properties object:

DriverManager.getConnection (String url, Properties info);

A Properties object holds a set of keyword-value pairs. It's used to pass driver properties
to the driver during a call to the getConnection () method.

To make the same connection made by the previous examples, use the following code:

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
import java.util.*;
String URL = "jdbc:oracle:thin:W@amrood:1521:EMP";
Properties info = new Properties();
info.put("user", "username");
info.put("password", "password");

Connection conn = DriverManager.getConnection (URL, info);

Closing JDBC connections:

At the end of your JDBC program, it is required explicitly close all the connections to the
database to end each database session. However, if you forget, Java's garbage collector
will close the connection when it cleans up stale objects.

Relying on garbage collection, especially in database programming, is very poor
programming practice. You should make a habit of always closing the connection with
the close () method associated with connection object.

To ensure that a connection is closed, you could provide a finally block in your code. A
finally block always executes, regardless if an exception occurs or not.

To close above opened connection you should call close () method as follows:

conn.close () ;

Explicitly closing a connection conserves DBMS resources, which will make your
database administrator happy.

8.4 Executing SQL statement And Query Execution

Once a connection is obtained we can interact with the database. The JDBC Statement,
CallableStatement, and PreparedStatement interfaces define the methods and
properties that enable you to send SQL or PL/SQL commands and receive data from
your database.

They also define methods that help bridge data type differences between Java and SQL
data types used in a database.

Following table provides a summary of each interface's purpose to understand how do
you decide which interface to use?

Interfaces Recommended Use
Use for general-purpose access to your database. Useful when you are using
Statement static SQL statements at runtime. The Statement interface cannot accept
parameters.
PreparedStatement |Use when you plan to use the SQL statements many times. The

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

PreparedStatement interface accepts input parameters at runtime.

Use when you want to access database stored procedures. The

CallableStatement CallableStatement interface can also accept runtime input parameters.

The Statement Objects:

Creating Statement Object:

Before you can use a Statement object to execute a SQL statement, you need to create
one using the Connection object's createsStatement () method, as in the following
example:

Statement stmt = null;

try {

stmt = conn.createStatement();

}

catch (SQLException e) {

}

finally {

}

Once you've created a Statement object, you can then use it to execute a SQL
statement with one of its three execute methods.

¢ boolean execute(String SQL) : Returns a boolean value of true if a ResultSet object
can be retrieved; otherwise, it returns false. Use this method to execute SQL DDL
statements or when you need to use truly dynamic SQL.

¢ int executeUpdate(String SQL) : Returns the numbers of rows affected by the
execution of the SQL statement. Use this method to execute SQL statements for which
you expect to get a number of rows affected - for example, an INSERT, UPDATE, or
DELETE statement.

¢ ResultSet executeQuery(String SQL) : Returns a ResultSet object. Use this method
when you expect to get a result set, as you would with a SELECT statement.
Closing Statement Obeject:

Just as you close a Connection object to save database resources, for the same reason
you should also close the Statement object.

A simple call to the close () method will do the job. If you close the Connection object
first it will close the Statement object as well. However, you should always explicitly
close the Statement object to ensure proper cleanup.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Statement stmt = null;

try {

stmt = conn.createStatement();
}

catch (SQLException e) {

}

finally {

stmt.close () ;

}

The PreparedStatement Objects:

The Preparedstatement interface extends the Statement interface which gives you
added functionality with a couple of advantages over a generic Statement object.

This statement gives you the flexibility of supplying arguments dynamically.

Creating PreparedStatement Object:

PreparedStatement pstmt = null;

try A
String SQL = "Update Employees SET age = ? WHERE id = ?";
pstmt = conn.prepareStatement (SQL) ;

iatch (SQLException e) {

} .

finally {

} .

All parameters in JDBC are represented by the ? symbol, which is known as the

parameter marker. You must supply values for every parameter before executing the
SQL statement.

The setXXX() methods bind values to the parameters, where XXX represents the Java
data type of the value you wish to bind to the input parameter. If you forget to supply the
values, you will receive an SQLException.

Each parameter marker is referred to by its ordinal position. The first marker represents

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

position 1, the next position 2, and so forth. This method differs from that of Java array
indices, which start at 0.

All of the Statement object's methods for interacting with the database
(a) execute (), (b) executeQuery (), and (c) executeUpdate ()

also work with the PreparedStatement object. However, the methods are modified
to use SQL statements that can take input the parameters.

Closing PreparedStatement Obeject:

Just as you close a Statement object, for the same reason you should also close the
PreparedStatement object.

A simple call to the close () method will do the job. If you close the Connection object
first it will close the PreparedStatement object as well. However, you should always
explicitly close the PreparedStatement object to ensure proper cleanup.

PreparedStatement pstmt = null;

try |

String SQL = "Update Employees SET age = ? WHERE id = ?";
pstmt = conn.prepareStatement (SQL) ;

}

catch (SQLException e) {

}

finally {

pstmt.close () ;
}

The CallableStatement Objects:

Just as a Connection object creates the Statement and PreparedStatement objects, it
also creates the callableStatement object which would be used to execute a call to
a database stored procedure.

Creating CallableStatement Object:
Suppose, you need to execute the following Oracle stored procedure:

CREATE OR REPLACE PROCEDURE getEmpName

(EMP_ID IN NUMBER, EMP_FIRST OUT VARCHAR) AS
BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;
END;

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
NOTE: Above stored procedure has been written for Oracle.

stored procedure - For MySQL as follows to create it in EMP database:
DELIMITER $$

DROP PROCEDURE IF EXISTS "EMP"."getEmpName’ $$
CREATE PROCEDURE "EMP"."getEmpName"

(IN EMP_ID INT, OUT EMP_FIRST VARCHAR(255))
BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;
END $$

DELIMITER ;

Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement object
only uses the IN parameter. The CallableStatement object can use all three.

Here are the definitions of each:

Parameter Description

IN A parameter whose value is unknown when the SQL statement is created. You bind
values to IN parameters with the setXXX() methods.

ouT A parameter whose value is supplied by the SQL statement it returns. You retrieve values
from theOUT parameters with the getXXX() methods.

INOUT A parameter that provides both input and output values. You bind variables with the
setXXX() methods and retrieve values with the getXXX() methods.

The following code snippet shows how to employ the Connection.prepareCall ()
method to instantiate a CallableStatement object based on the preceding stored

procedure:

CallableStatement cstmt = null;

try |

String SQL = "{call getEmpName (?, ?2)}";

cstmt = conn.prepareCall (SQL);
}
catch (SQLException e) {

}

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
finally {

}
The String variable SQL represents the stored procedure, with parameter placeholders.

Using CallableStatement objects is much like using PreparedStatement objects.
You must bind values to all parameters before executing the statement, or you will
receive an SQLException.

If you have IN parameters, just follow the same rules and techniques that apply to a
PreparedStatement object; use the setxxx () method that corresponds to the Java
data type you are binding.

When you use OUT and INOUT parameters you must employ an additional
CallableStatement method, registerOutParameter (). The
registerOutParameter () method binds the JDBC data type to the data type the
stored procedure is expected to return.

Once you call your stored procedure, you retrieve the value from the OUT parameter
with the appropriate getxxX () method. This method casts the retrieved value of SQL
type to a Java data type.

Closing CallableStatement Obeject:

Just as you close other Statement object, for the same reason you should also close the
CallableStatement object.

A simple call to the close () method will do the job. If you close the Connection object
first it will close the CallableStatement object as well. However, you should always
explicitly close the callableStatement object to ensure proper cleanup.

CallableStatement cstmt = null;

try {
String SQL = "{call getEmpName (2, ?2)}";
cstmt = conn.prepareCall (SQL);

}
catch (SQLException e) {

}
finally {
cstmt.close () ;

}

The SQL statements that read data from a database query return the data in a result set.
The SELECT statement is the standard way to select rows from a database and view
them in a result set. The java.sqgl.ResultSet interface represents the result set of a
database query.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

A ResultSet object maintains a cursor that points to the current row in the result set. The
term "result set" refers to the row and column data contained in a ResultSet object.

The methods of the ResultSet interface can be broken down into three categories:
¢ Navigational methods: used to move the cursor around.

¢ Get methods: used to view the data in the columns of the current row being pointed to
by the cursor.

e Update methods: used to update the data in the columns of the current row. The
updates can then be updated in the underlying database as well.

The cursor is movable based on the properties of the ResultSet. These properties are
designated when the corresponding Statement that generated the ResultSet is created.

JDBC provides following connection methods to create statements with desired
ResultSet:

o createStatement(int RSType, int RSConcurrency);
e prepareStatement(String SQL, int RSType, int RSConcurrency);
o prepareCall(String sql, int RSType, int RSConcurrency);

The first argument indicate the type of a ResultSet object and the second argument is
one of two ResultSet constants for specifying whether a result set is read-only or
updatable.

Example-

/***/

//This example was coded and tested with JDK

//Access was used as database, over the JDBC-ODBC bridge which
//comes with the JDK.

//To run this example, you need a database with the following
//properties:

//=> a table called "Cust"

//=> a system DSN called "Database"
/***/

import java.sqgl.* ;

class JDBCQuery

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
{
public static void main(String args[])
{
try
{
// Load the database driver
Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver") ;

// Get a connection to the database
Connection conn =

DriverManager.getConnection("jdbc:odbc:Database”") ;

// Print all warnings

for(SQLWarning warn = conn.getWarnings();
warn != null;
warn = warn.getNextWarning ())

{

System.out.println("SQL Warning:") ;
System.out.println("State : " + warn.getSQLState ())
System.out.println("Message: " + warn.getMessage ())
System.out.println("Error + warn.getErrorCode ()) ;

}

// Get a statement from the connection
Statement stmt = conn.createStatement () ;

// Execute the query
ResultSet rs = stmt.executeQuery("SELECT * FROM Cust")

// Loop through the result set
while(rs.next ())
System.out.println(rs.getString(l)) ;

// Close the result set, statement and the connection

rs.close () ;
stmt.close () ;
conn.close () ;

}
catch(SQLException se)

{
System.out.println("SQL Exception:") ;

// Loop through the SQL Exceptions

while(se != null)

{
System.out.println("State : " + se.getSQLState())
System.out.println("Message: " + se.getMessage())

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
System.out.println("Error : " + se.getErrorCode()) ;

se = se.getNextException() ;
}
}

catch(Exception e)

{
System.out.println(e) ;

}

8.5 Scrollable and updatable result sets

Result Set types in JDBC

In JDBC ResultSets are classified into following ways.
1.on the basis of ResultSet cursor movement.
2.on the basis of ResultSet concurrency.

on the basis of ResultSet cursor movement there are two types of ResultSets

i)forward only ResultSet:

This ResultSet will allow users only to iterate the data in forward direction.To refer this
ResultSet object ResultSet interface has provided the following constant.

Public static final int TYPE FORWARD ONLY
ii)scrollable ResultSets:

These Resultset objects will allow the users to interact the data in both forward and
backward directions.

Scrollable ResultSets can be divided into following two types.
a)ScrollSensitive ResultSet:

Itis a Resultset object, it will allow the later database modifications.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
To represent this ResultSet object we have to use the following constant from
ResultSet interface.
Public static final TYPE SCROLL SENSITIVE

b)ScrollinSensitive ResultSet:

These are scrollable ResultSetss objects, which will allow the later
database modifications after creation.

To represent this ResultSet object we have to use the following constant from
ResultSet interface.

Public static final TYPE SCROLL INSENSITIVE

on the basis of ResultSet concurrency there are two types of ResultSets

i)Read only ResultSet:

This ResultSet will allow the users only to read the data.To represent this
ResultSet object we have to use following constant from ResultSet interface.

Public static final int CONCUR READ ONLY
iijupdatable ResultSet:
This ResultsSet object will allow user to perform updation on it's content.

To represent this ResultSet object we have to use following constant from
ResultSet interface.

Public static final int CONCUR_UPDATABLE.

If you want to specify particular ResultSet type in JDBC applications then we have to
specify the type of ResultsSet object at the time of creation of statement object.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more
To achieve this we have to use the following method

public statement createStatement (int
forwardonly/ScrollSensitive/ScrollInsensitive, int
readonly/updatable) throws SQLException

Scrollable and Updatable Result Sets Method Details

In JDBC applications by using ScrollSensitive ResultSet object we are able to
get the Database later modifications in ResultSet object automatically.

In case of Srollsensitive ResultSet object after performing updations at
Database to reflect that updations into the ResultSet object record we have to refresh
each and every row in ResultSet object.

To refresh present report a scroll sensitive ResultSet object we have to use the
following method.

Public void refreshRow() throws SQLException

In case of scrollable ResultSet objectto move ResultSet cursor before first
record position we have to use following method

public void beforeFirst ()

To move ResultSet cursor after last record position we have to use following method
public void afterLast ()

To move ResultSet cursor to first record position we will use the following method
public boolean first()

To move ResultSet cursor to last record position we will use the following method
public boolean last ()

To move ResultSet cursor to a particular record position we will use the following
method

public boolean absolute(int rec position)

To skip particular no.of records from the current position of the ResultSet we have to use
the following method

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
public boolean relative(int no of records)

note:lf the int value is positive then ResultSet cursor will move in forward direction, if it is
negative then ResultSet cursor will move in backward direction.

To insert new row in updatable ResultSet object we have to use following method
public void moveToInsertRow ()

To insertrecord data temporarily in a row we have to use the following method
public void updatexxx(int column index,xxx value)

In order to make temporary insertion as permanent insertion in the ResultSet object and
database we have to use following method.

public void insertRow()
Example program - 1 :

import java.sqgl.Connection;
import java.sgl.DriverManager;
import java.sgl.ResultSet;

import java.sqgl.Statement;
import java.util.Properties;

public class JdbcAppléd {
public static void main (String args[])throws Exception
{
Class. forName (“com.mysqgl.jdbc.Driver”) ;
Properties p=new Properties();
Connection
con=DriverManager.getConnection (“jdbc:mysqgl://localhost:3306/test

” ”

,"root”,”system”) ;

Statement
st=con.createStatement (ResultSet.TYPE SCROLL SENSITIVE,ResultSet.
CONCUR_UPDATABLE);

boolean b=st.execute(“select * from empl”);
System.out.println (b) ;

ResultSet rs=st.getResultSet();

System.out.println (“———-—7-%);

System.out.println (“ENO ENAME ESAL”) ;

while (rs.next ())

{

System.out.println(rs.getString (“eno”)+” “+rs.getString (“ename”

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

) +7 “+rs.getString (Yesal”));

}

System.out.println (“application in pausing state”);

System.out.println (“perform updations at database”);

System.in.read() ;

rs.beforeFirst () :;

System.out.println(“data after updations”);
System.out.println (“—+-");
(
(

System.out.println (“ENO ENAME ESAL”) ;
System.out.println (“—-—+7-—-");
while (rs.next ())
{
rs.refreshRow () ;
System.out.println(rs.getString (“eno”)+” “+rs.getString (“ename”
) +7 “+rs.getString(“Yesal”));

}

con.close() ;

}
}

note:

In JDBC Applications ScrollSensitive ResultSet object is supported by type-1 driver
provided by SUN Micro Systems, it could not be supported by type-4 driver provided by
ORACLE

In JDBC Applications Scrollinsensitive ResultSet could not be supported by both type-1
driver driver provided by SUN Micro Systems and type-4 driver provided by ORACLE.

The next example demonstrates the advance features of the ResultSet.

Example program - 2 :

package com.visualbuilder;
import java.sgl.Connection;
import java.sqgl.DriverManager;
import java.sgl.ResultSet;
import java.sgl.Statement;

public class UpdateableAndScrollableRS {
public static void main (String[] args) {

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
try {
/** Loading the driver*/
Class. forName ("com.mysqgl.jdbc.Driver");

/** Getting Connection*/

Connection con =

DriverManager.getConnection ("jdbc:mysqgl://localhost:33
06/test", "root", "root") ;

/** Creating Statement*/

Statement stmt =
con.createStatement (ResultSet.TYPE SCROLL SENSITIVE, Re
SultSet.CONCUR_UPDATABLE);

/** Getting ResultSet*/

ResultSet rs=stmt.executeQuery("select * from
visualbuilder") ;

while (rs.next ()) {
System.out.print ("Id is " + rs.getInt("id"));
System.out.println (" Name is
"trs.getString ("name")) ;
}
rs.absolute (1) ;
rs.updateString (2, "Visual Builder");
rs.updateRow () ;
rs.beforeFirst () :;
System.out.println ("After Updation");
while (rs.next ()) {
System.out.print ("Id is " + rs.getInt("id"));
System.out.println (" Name is
"+rs.getString ("name")) ;

}
/** Closing the Connection*/

stmt.close () ;
con.close () ;

} catch (Exception e) {
e.printStackTrace() ;

}

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
Id is 1 Name is Sun java

Id is 2 Name is Visual Builder
Id is 3 Name is Eclipse
Id is 4 Name is IBM

Id is 5 Name is Jakarta

After Updation

Id is 1 Name is Visual Builder
Id is 2 Name is Visual Builder
Id is 3 Name is Eclipse

Id is 4 Name is IBM

Id is 5 Name is Jakarta

8.6 Row sets

A RowSet object is a java bean component and extends the ResultSet interface
Thus, it has a set of JavaBeans properties and follows the JavaBeans event model. A
RowSet object's properties allow it to establish its own database connection and to
execute its own query in order to fill itself with data

Types of Rowset

The RowSet is majorly classified into two types as per their properties:-

1. Connected Rowset.:- The connected rowset as the name suggests in connected to
the database connection object like the resultset. The JDBCRowSet is the example of
the connected RowSet.

2. Disconnected RowSet:- The disconnected RowSet only connects to the database
whenever required and after finishing the interaction they close the database connection.
So if the connection pool is minimally used in this case.

There are following ways to create the JDBCRowSet -

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more

1. Passing the ResultSet:- In this approach the data is populated in the object and then
you can retrieve the data by using the getter methods as we did in case of the ResultSet.

Exmple:-
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(“select * from employee”);

JdbcRowSet jdbcRs = new JdbcRowSetImpl (rs);

2. Creating the default object:- This approach is useful if you want to set the data
sources dynamically. In this approach the Database URL, username and password is
explicitly set in the RowSetObject.

Exmple -

JdbcRowSet jdbcRs = new JdbcRowSetImpl () ;

jdbcRs.setUsername ("user") ;

jdbcRs.setPassword ("password") ;

jdbcRs.setUrl ("jdbc:mySubprotocol :mySubname") ;
jdbcRs.setCommand ("select * from EMP ");

jdbcRs.execute () ;

The following example will illustrate the basic operation using the JDBCRowSet
interface.

import java.sqgl.SQLException;
import javax.sqgl.rowset.JdbcRowSet;
import com.sun.rowset.JdbcRowSetImpl;
public class JDBCRowSetExample {
public static void main (String[] args) throws SQLException({
JdbcRowSet jdbcRs = new JdbcRowSetImpl () ;

jdbcRs.setUsername ("scott") ;

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
jdbcRs.setPassword ("tiger") ;

jdbcRs.setUrl ("jdbc:odbc:MyDsn") ;
jdbcRs.setCommand ("select * from employee");
jdbcRs.execute () ;

while (jdbcRs.next ()) {

System.out.println (jdbcRs.getString ("ename")) ;
}

Ouput:-
Adam
Susan
Adran
Hardy
Tim

Michael

8.7 metadata
Definition:
Data about the data is called as metadata.In JDBC there are two types of metadata.
1.Database metadata
2.ResultSet metadata.
JDBC Meta Data is the collective information about the data structure and property of a
column available in table. The meta data of any table tells you the name of the

columns,datatype used in column and constraint used to enter the value of data into
column of the table.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
Understand with Example

In this program, the code describe you JDBC Meta Data Get tables that explain the
column property and structure of table. The class Jdbc MetaDataGettables include
the list of methods to get the meta data property of table as given follow -

Loading a driver by calling a class. forname (),this accept driver class as argument.

DriverManager.getConnection () -This method return you a connection object and
built a connection between url and database. Once a connection is built, a front end can
access, insert ,update and retrieve the data in the backend database.

con.createStatement () -This is used to create a sql object. An object of connection
class is used to send and create a sqgl query in the database backend.

executeQuery () -The method retrieve a record set from a table in database. The
retrieve record set is assigned to a result set.

getMetaData () - The Result Set call get Metadata () ,which return you the property
of the retrieve record set (length,field,column).Meta Data account for data element and
its attribute.

getcolumncount () -The method return you a integer data type and provides you the
number of column in the Result set object.

Finally the printin print the table name, field, size and data type.
In case there is an exception in the try block The subsequent catch block caught and

handle the exception.
JdbcMetaDataGettables.java

import java.sql.*;

public class JdbcMetaDataGettables {

static public final String driver =
"com.mysqgl.jdbc.Driver";

static public final String connection =

"jdbc:mysqgl://localhost:3306/test";

static public final String user = "root";
static public final String password = "root";
public static void main(String args[]) {

try {

Class.forName (driver) ;

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
Connection con =

DriverManager.getConnection (connection, user,password);

Statement st

con.createStatement () ;

String sgl = "select * from person";

ResultSet rs = st.executeQuery(sql);

ResultSetMetaData metaData = rs.getMetaData();
int rowCount = metaData.getColumnCount () ;

System.out.println ("Table Name : " +
metaData.getTableName (2)) ;

System.out.println ("Field \tsize\tDataType") ;
for (int i = 0; 1 < rowCount; 1i++) {

System.out.print (metaData.getColumnName (i + 1) +
"\t") ;

System.out.print (metaData.getColumnDisplayS ize (i + 1)
+"\t") ;

System.out.println (metaData.getColumnTypeNa me (i +

}
} catch (Exception e) ({

System.out.println(e);

}

Output:-

Table Name:person

Field Size DataTypes

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

id 2 VARCHAR
cname 50 VARCHAR
dob 10 DATE

8.8 Transaction
Transaction Management in JDBC

Transaction represents a single unit of work.

The ACID properties describes the transaction management well. ACID stands for
Atomicity, Consistency, isolation and durability.

Atomicity means either all successful or none.

Consistency ensures bringing the database from one consistent state to another
consistent state.

Isolation ensures that transaction is isolated from other transaction.

Durability means once a transaction has been committed, it will remain so, even in the
event of errors, power loss etc.

Advantage of Transaction Mangaement

fast performance It makes the performance fast because database is hit at the time of
commit.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker
Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Transaction succeeded

O

commit

. | Transaction

Initial state

rollback

O

Transaction failed

Fig. Transaction Management in JDBC

In JDBC, Connection interface provides methods to manage transaction.

Method Description
void setAutoCommit(boolean It is true bydefault means each transaction is committed
status) bydefault.
void commit() commits the transaction.
void rollback() cancels the transaction.

Simple example of transaction management in jdbc using Statement

Let's see the simple example of transaction management using Statement.

import java.sqgl.*;

class FetchRecords{

public static void main(String args[])throws Exception/{

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [/ CG6PA->PERCENTAGE

Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
Class.forName ("oracle.jdbc.driver.OracleDriver") ;

Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@
localhost:1521:xe", "system", "oracle");

con.setAutoCommit (false) ;
Statement stmt=con.createStatement () ;

stmt.executeUpdate ("insert into user420 values (190, 'abhi', 4000
0)");

stmt.executeUpdate ("insert into user420 values (191, 'umesh',b 500
00)");

con.commit () ;
con.close () ;
b}
If you see the table emp400, you will see that 2 records has been added.
Example of transaction management in jdbc using PreparedStatement
Let's see the simple example of transaction management using PreparedStatement.
import java.sqgl.*;

import java.io.*;

class TM{
public static void main(String args|[]) {
try{

Class.forName ("oracle.jdbc.driver.OracleDriver") ;

Connection con=DriverManager.getConnection ("jdbc:oracle:thi
n:@localhost:1521:xe", "system", "oracle");

con.setAutoCommit (false) ;

PreparedStatement ps=con.prepareStatement ("insert into used
20 values (?,?,?2)");

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
BufferedReader br=new BufferedReader (new InputStreamReader (
System.in));
while (true) {
System.out.println("enter id");
String sl=br.readLine();
int id=Integer.parselnt(sl);
System.out.println("enter name");
String name=br.readLine () ;
System.out.println ("enter salary");
String s3=br.readLine();
int salary=Integer.parselnt (s3);
ps.setInt (1,1id);
ps.setString (2, name) ;
ps.setInt (3,salary);
ps.executeUpdate () ;
System.out.println ("commit/rollback");
String answer=br.readLine () ;
if (answer.equals ("commit")) {

con.commit () ;

if (answer.equals ("rollback")) {

con.rollback () ;

System.out.println ("Want to add more records y/n");

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
String ans=br.readLine();

if (ans.equals("n")) {

break;

}

}

con.commit () ;

System.out.println("record successfully saved");
con.close();//before closing connection commit () is called
}catch (Exception e) {System.out.println(e);}

)

It will ask to add more records until you press n. If you press n, transaction is committed.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [/ CG6PA->PERCENTAGE

Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

