educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Chapter 1

Event handling

1.1 Introduction

1.2 The Delegation event model

13 Events

14 Event classes

1.5 Event listener interfaces

1.6 Using the delegation event model
1.7 Adapter classes

1.8 Inner classes

1.1 Introduction

An event is any happening or occurring. Event-handling code is the heart of every useful application. All
event-driven programs are structured around their event-processing model. Java events are a part of
the Java Abstract Windowing Toolkit (AWT) package.

As explained in next chapter, applets are event-driven programs. Thus, event handling is at the core of
successful applet programming.

An applet is basically an event-driven program in which events are generated by mouse, keyboard and
window or other graphical user interface components. The events are passed to the events methods
and there are specific methods for recognizing and handling the events.

Events are supported by the java.awt.event package.

There are two main models for handling events in Java: the old model, called the Inheritance Event
Model, is obsolete; the new model, called the Delegation Event Model, will be discussed in detail.

1.2 The Delegation event model

The delegation event model derives its name from the fact that event handling is delegated
from an event source to one or more event listeners.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
Event Model is based on the concept of an "Event Source" and "Event Listeners". Any object that is

interested in receiving messages (or events) is called an Event Listener, and any object that generates
these messages (or events) is called an Event Source.

(
Event Source
e generates events
e ex. Button
creates I Passes to listener method
, | I
y ()

Event Listener

Event Object ® any object implement

¢ describes an event these interfaces
e ex. ActionEvent holds e ex. ActionListener has
state of Shift key method

actionPerformed()

1.3 Events, Event Sources, Event Listeners

An event is propagated from a "Source" object to a "Listener" object by invoking a method on the
listener and passing in the instance of the event subclass which defines the event type generated. A
Listener is an object that implements a specific EventListener interface that extends from the

generic java.util. EventListener.

An EventlListener interface defines one or more methods that are to be invoked by the event source in
response to each specific event type handled by the interface.

An Event Source is an object that originates or "fires" events. A source is an object that generates an
event. This occurs when object changes in some way. Source may generate more than one type of
event. A source must register listeners in order for the listeners to receive notifications about a specific
type of event. Each type of event has its own registration method.

General form:

public void addTypelistener (TypelListener el)

When an event occurs, all registered listeners are notified and receive a copy of the event object.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

1.4 Event classes

Event Model defines a large number of event classes. At the root of the Java event class hierarchy is
jJava.util.EventObject. Everyeventisasubclass of java.util.EventObject. Itisa very
general class with only one method of interest.

Object getSource /()

This method returns the object that originated the event. Every event has a source object, from which
the event originated. This method returns a reference to that source.

java.awt.AWTEvent: AWT events, which is the main concern here, are subclasses of java.
awt .AWTEvent. This is the super class of all the delegation model event classes. The most interesting
method in this class is:

int getID()

This method returns the ID of the event. An event's ID is an int that specifies the exact nature of the
event. This value is used to distinguish the various types that are represented by any event class.

Table enumerates the most important of these event classes and provides a brief description of when
they are generated.

Event Class Description

ActionEvent Generated when a button is pressed, a list is
double-clicked, or a menu item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved,
resized, or becomes visible.

ContainerEvent Generated when a component is added to or

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

removed from a container.

FocusEvent

Generated when a component gains or loses
keyboard focus.

InputEvent

Abstract super class for all component input event
classes.

ItemEvent

Generated when a check box or a list item is
clicked; also occurs when a choice selection is
made or a checkable menu is selected or
deselected.

KeyEvent

Generated when input is received from the
keyboard.

MouseEvent

Generated when the mouse is dragged, moved,
clicked, pressed, or released; also generated when
the mouse enters or exits a component.

TextEvent

Generated when the value of a text area or text
field is changed.

WindowEvent

Generated when a window os activated, closed,
deactivated, deiconified, iconified, opened, or quit.

The most commonly used constructors and methods in each class are described in the following

sections.

1.4.1 The ActionEvent Class

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [/ CGPA->PERCENTAGE

FB/IG/TW: @educlashco

Visit educlash.com for more

[Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
An object of this class represents a high-level action event generated by an AWT component. Instead of

representing a direct user event, such as a mouse or keyboard event, ActionEvent represents some
sort of action performed by the user on an AWT component.

The getID () method returns the type of action that has occurred. For AWT-generated action events,
this type is always ActionEvent . ACTION PERFORMED; custom components can generate action
events of other types.

The getActionCommand () method returns a String that serves as a kind of name for the action that
the event represents. The Button and MenuItem components have a

setActionCommand () method that allows the programmer to specify an action command string to
be included with any action events generated by those components. It is this value that is returned by

the getActionCommand () method. When more than one Button or other component notifies the
same ActionListener, youcanuse getActionCommand () to help determine the appropriate
response to the event.

getModifiers () returns avalue that indicates the keyboard modifiers that were in effect when the
action event was triggered. Use the various MASK constants, along with the & operator, to decode
this value.

ActionEvent has these constructors:
ActionEvent(Object src, int type, String cmd)
ActionEvent(Object src, int type, String cmd, int modifiers)

Here, srcis a reference to the object that generated this event. The type of the event is specified by
type, and its command string is cmd.

The command name for the invoking ActionEvent object by using

the getActionCommand() method, shown here:

String getActionCommand()

1.4.2 The AdjustmentEvent class

An event of this type indicates that an adjustment has been made to an Adjustable object--usually,
this means that the user has interacted with a Scrollbar component.

The getValue () method returns the new value of the Adjustable object. This is usually the most
important piece of information stored in the event. getAdjustable () returns

the Adjustable object that was the source of the event. It is a convenient alternative to the
inherited getSource () method.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more
The getID () method returns the type of an AdjustmentEvent. The standard AWT components
only generate adjustment events of the type
AdjustmentEvent .ADJUSTMENT VALUE CHANGED.

The getAdjustmentType () method returns one of five constants to indicate which type has
occurred.

There are several types of adjustments that can be made to an Adjustable object, the constants and
their meanings are shown here:

e UNIT INCREMENT indicates that the Adjustable value has been incremented by one unit,
as in a scroll-line-down operation.

e UNIT DECREMENT indicates the opposite: scroll-line-up.

e BLOCK INCREMENT and BLOCK DECREMENT indicate that the Adjustable object has
been incremented or decremented by multiple units, as in a scroll-page-down or scroll-page-up
operation.

e The TRACK constant indicates that the Adjustable value has been set to an absolute value
unrelated to its previous value, as when the user drags a scrollbar to a new position.

Here is one AdjustmentEvent constructor:
AdjustmentEvent (Adjustable src, int id, int type, int data)

Here, srcis a reference to the object that generated this event. The id equals
ADJUSTMENT VALUE CHANGED. The type of the event is specified by type, and its associated data is
data.

1.4.3 The ComponentEvent class

An event of this type serves as notification that the source Component has been moved, resized,
shown, or hidden. Note that this event is a notification only: the AWT handles
these Component operations internally, and the recipient of the event need take no action itself.

getComponent () returns the component that was moved, resized, shown, or hidden. It is simply a
convenient alternative to getSource (). getID () returns one of four COMPONENT _constants to
indicate what operation was performed on the Component.

The constants and their meanings are shown here:
e COMPONENT HIDDEN indicates that the component was hidden.
e COMPONENT MOVED indicates that the component was moved.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more

e COMPONENT RESIZED indicates that the component was resized.
e COMPONENT SHOWN indicates that the component became visible.

ComponentEvent has this constructor:
ComponentEvent (Component src, int type)

Here, srcis a reference to the object that generated this event. The type of the event is specified by
type.

1.4.4 The ContainerEvent class

An event of this type serves as notification that the source Container has had a child added to it or
removed from it. Note that this event is a notification only; the AWT adds or removes the child
internally, and the recipient of this event need take no action itself.

getChild () returnsthe child Component that was added or removed,

and getContainer () returnsthe Container to which it was added or from which it was removed.
getContainer () is simply a convenient alternative to getSource (). getID () returns the
constant COMPONENT ADDED or COMPONENT REMOVED to indicate whether the specified child was
added or removed.

ContainerEvent is a subclass of ComponentEvent and has this constructor:
ContainerEvent (Component src, int type, Component comp)

Here, srcis a reference to the container that generated this event. The type of the event
is specified by type, and the component that has been added to or removed from the container is comp.

1.4.5 The FocusEvent class

An event of this type indicates that a Component has gained or lost focus on a temporary or
permanent basis. Use the inherited getComponent () method to determine which component has
gained or lost focus. Use getID () to determine the type of focus event; it

returns FOCUS_ GAINED or FOCUS_ LOST.

When focus is lost, you can call isTemporary () to determine whether it is a temporary loss of focus.
Temporary focus loss occurs when the window that contains the component loses focus, for example, or
when focus is temporarily diverted to a popup menu or a scrollbar. Similarly, you can also

use isTemporary () to determine whether focus is being granted to a component on a temporary
basis.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

FocusEvent is a subclass of ComponentEvent and has these constructors:
FocusEvent (Component src, int type)
FocusEvent (Component src, int type, boolean temporaryFlaqg)

Here, srcis a reference to the component that generated this event. The type of the event
is specified by type. The argument temporaryFlag is set to true if the focus event is temporary.
Otherwise, it is set to false.

1.4.6 The InputEvent class

This abstract class serves as the superclass for the raw user input event

types MouseEvent and KeyEvent. Use the inherited getComponent () method to determine in
which component the event occurred. Use getWhen () to obtain a timestamp for the event.

Use getModifiers () to determine which keyboard modifier keys or mouse buttons were down
when the event occurred. You can decode the getModifiers () return value using the

various MASK constants defined by this class. The class also defines four convenience methods for
determining the state of keyboard modifiers.

As input events are delivered to the appropriate listener objects before they are delivered to the AWT
components themselves. If a listener calls the consume () method of the event, the event is not passed
on to the component. For example, if a listener registered on a But ton consumes a mouse click, it
prevents the button itself from responding to that event. You can use i sConsumed () to test whether
some other listener object has already consumed the event.

Originally, the InputEvent class defined the following values to represent the modifiers.

ALT GRAPH MASK
ALT MASK
BUTTON1 MASK
BUTTON2 MASK
BUTTON3_ MASK
CTRL_MASK
META MASK
SHIFT MASK

To test if a modifier was pressed at the time an event is generated, use the
isAltDown (), isAltGraphDown(), isControlDown(), isMetaDown(), and
isShiftDown () methods.

1.4.7 The ltemEvent class

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

An event of this type indicates that an item within an TtemSelectable component has had its
selection state changed. getItemSelectable () is a convenient alternative to getSource () that
returns the TtemSelectable object that originated the event. getItem () returns an object that
represents the item that was selected or deselected.

getID () returnsthe type of the TtemEvent. The standard AWT components always generate item
events of type ITEM STATE CHANGED. The getStateChange () method returns the new
selection state of the item: it returns one of the constants SELECTED or DESELECTED. (This value can
be misleading for Checkbox components that are part of a CheckboxGroup. If the user attempts to
deselect a selected component, a DESELECTED event is delivered, but

the CheckboxGroup immediately reselects the component to enforce its requirement that at least
one Checkbox be selected at all times.)

ItemEvent has this constructor:

public ItemEvent (ItemSelectable src, int id, Object item,
int stateChange) ;

Here, srcis a reference to the component that generated this event. For example, this
might be a list or choice element. The type of the event is specified by id. The specific
item that generated the item event is passed in item. The current state of that itemis in stateChange.

1.4.8 The KeyEvent class

An event of this type indicates that the user has pressed or released a key on the

keyboard. Call getID () to determine the particular type of key event that has occurred. The
constant KEY PRESSED indicates that a key has been pressed, while the

constant KEY RELEASED indicates that a key has been released. Not all keystrokes actually
correspond to or generate Unicode characters. Modifier keys and function keys, for example, do not
correspond to characters. Furthermore, for internationalized input, multiple keystrokes are sometimes
required to generate a single character of input. Therefore, getID () returns a third

constant, KEY TYPED, toindicate a KeyEvent that actually contains a character value.

For KEY PRESSED and KEY RELEASED key events, use getKeyCode () to obtain the virtual
keycode of the key that was pressed or released. KeyEvent defines a number of VK constants that
represent these virtual keys. For example,

VK_0 through VK9 and VK_A through VK_Z define the ASCIl equivalents of the numbers and letters.

Note that not all keys on all keyboards have corresponding constants in the KeyEvent class, and not
all keyboards can generate all of the virtual keycodes defined by this class. If the key that was pressed or

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
released corresponds directly to a Unicode character, you can obtain that character by
calling getKeyChar (). If there is not a corresponding Unicode character, this method returns the
constant CHAR UNDEFINED.
The isActionKey () method returns true if the key that was pressed or released does not have a
corresponding character.

For KEY TYPED key events, use getKeyChar () to return the Unicode character that was typed. If
you call getKeyCode () for this type of key event, it returns VK_UNDEFINED.

See InputEvent for information on inherited methods you can use to obtain the keyboard modifiers
that were down during the event and other important methods. Use getComponent (), inherited
from ComponentEvent, to determine over what component the event occurred. The static

method getKeyText () returns a (possibly localized) textual name for a given keycode. The static
method getKeyModifiersText () returns a (possibly localized) textual description for a set of
modifiers.

KeyEvent has methods that allow you to change the keycode, key character, or modifiers of an event.
These methods, along with the consume () method, allow a KeyListener to perform filtering of
key events before they are passed to the underlying AWT component.

KeyEvent is a subclass of InputEvent. Here are two of its constructors:

KeyEvent (Component src, int type, long when, int modifiers, int code)
KeyEvent (Component src, int type, long when, int modifiers, int code,
char ch)

Here, srcis a reference to the component that generated the event. The type of the event

is specified by type. The system time at which the key was pressed is passed in when. The
modifiers argument indicates which modifiers were pressed when this key event occurred.
The virtual key code, such as VK_UP, VK A, and so forth, is passed in code. The character
equivalent (if one exists) is passed in ch. If no valid character exists, then ch contains

CHAR UNDEFINED.

1.4.9 The MouseEvent class

An event of this type indicates that the user has moved the mouse or pressed one of the mouse
buttons. Call getID () to determine the specific type of mouse event that has occurred. This method
returns one of the following seven constants, which corresponds to a method in either

the MouseListener or MouseMotionListener interface:

e MOUSE PRESSED
The user has pressed a mouse button.
e MOUSE RELEASED

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more
The user has released a mouse button.
e MOUSE CLICKED
The user has pressed and released a mouse button without any intervening mouse drag.
e MOUSE DRAGGED
The user has moved the mouse while holding a button down.
e MOUSE MOVED
The user has moved the mouse without holding any buttons down.
e MOUSE ENTERED
The mouse pointer has entered the component.
e MOUSE EXITED
The mouse pointer has left the component.

Use getX () and getY () or getPoint () to obtain the coordinates of the mouse event.
Use translatePoint () to modify these coordinates by a specified amount.

Use getModifiers () and other methods and constants inherited from InputEvent to determine
the mouse button or keyboard modifiers that were down when the event occurred.

See InputEvent for details. Note that mouse button modifiers are not reported

for MOUSE RELEASED events, since, technically, the mouse button in question is no longer pressed.

Use getComponent (), inherited from ComponentEvent, to determine over which component the
event occurred. For mouse events of type MOUSE CLICKED, MOUSE PRESSED,

or MOUSE RELEASED, call getClickCount () to determine how many consecutive clicks have
occurred. If you are using popup menus, use isPopupTrigger () to test whether the current event
represents the standard platform-dependent popup menu trigger event.

MouseEvent is a subclass of InputEvent. Here is one of its constructors.
public MouseEvent (Component src, int type, long when, int modifiers,
int x, int y, int clicks, boolean triggersPopup)

Here, srcis a reference to the component that generated the event. The type of the event
is specified by type. The system time at which the mouse event occurred is passed in
when. The modifiers argument indicates which modifiers were pressed when a mouse
event occurred. The coordinates of the mouse are passed in x and y. The click count is
passed in clicks. The triggersPopup flag indicates if this event causes a pop-up menu to
appear on this platform.

1.4.9 The TextEvent class

An event of this type indicates that the user has edited the text value that appears in
aTextField, TextArea, or other TextComponent. This event is triggered by any change to the

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more

displayed text. Note that this is not the same as the ActionEvent sent by the TextField object
when the user edits the text and strikes the Return key.

Use the inherited getSource () to determine the object that was the source of this event. You have
to cast that object to its TextComponent type. Call getID () to determine the type of

a TextEvent. The standard AWT components always generate text events of

type TEXT VALUE CHANGED.

The one constructor for this class is shown here:
public TextEvent (Object src, int type)

Here, srcis a reference to the object that generated this event. The type of the event is specified by
type.

1.4.10 The WindowEvent class

An event of this type indicates that an important action has occurred for

a Window object. Call getWindow () to determine the Window object that is the source of this event.
Call getID () to determine the specific type of event that has occurred. Each of the following seven
constants corresponds to one of the methods of the WindowListener interface:

e WINDOW OPENED
Indicates that the window has been created and opened; it is delivered only the first time
that a window is opened.

e WINDOW CLOSING
Indicates that the user has requested that the window be closed through the system menu,
through a close button on the window's border, or by invoking a platform-defined
keystroke, such as Alt-F4 in Windows. The application should respond to this event by
calling hide () or dispose () on the Window object.

e WINDOW CLOSED
Delivered after a window is closed by a call to hide () or dispose ().

e WINDOW ICONIFIED
Delivered when the user iconifies the window.

e WINDOW DEICONIFIED
Delivered when the user deiconifies the window.

e WINDOW ACTIVATED
Delivered when the window is activated--that is, when it is given the keyboard focus and
becomes the active window.

e WINDOW DEACTIVATED
Delivered when the window ceases to be the active window, typically when the user
activates some other window.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

WindowEvent is a subclass of ComponentEvent. It defines constructor:
public WindowEvent (Window src, int type)

Here, srcis a reference to the object that generated this event. The type of the event is type.
adds the next three constructors.

WindowEvent (Window src, int type, Window other)

WindowEvent (Window src, int type, int fromState, int toState)
WindowEvent (Window src, int type, Window other, int fromState, int
toState)

Here, other specifies the opposite window when a focus event occurs. The fromState
specifies the prior state of the window and toState specifies the new state that the
window will have when a window state change occurs.

15 Event Listener Interfaces

As explained, the delegation event model has two parts: sources and listeners. Listeners are
created by implementing one or more of the interfaces defined by the java.awt.event

package.

When an event occurs, the event source invokes the appropriate method defined by the

listener and provides an event object as its argument. Following Table lists commonly used listener
interfaces and provides a brief description of the methods that they define.

Interface Description
ActionListener Defines one method to receive action events.
AdjustmentListener Defines one method to receive adjustment events.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

ComponentListener

Defines four methods to recognize when a
component is hidden,
moved, resized, or shown.

ContainerListener

Defines two methods to recognize when a
component is added to
or removed from a container.

FocusListener

Defines two methods to recognize when a
component gains or loses
keyboard focus.

ItemListener

Defines one method to recognize when the state
of an item changes.

KeyListener

Defines three methods to recognize when a key is
pressed, released,
or typed.

MouselListener

Defines five methods to recognize when the
mouse is clicked, enters

a component, exits a component, is pressed, or is
released.

MouseMotionListener

Defines two methods to recognize when the
mouse is dragged or
moved.

MouseWheelListener

Defines one method to recognize when the mouse
wheel is moved.

TextListener

Defines one method to recognize when a text
value changes.

WindowFocusListener

Defines two methods to recognize when a window
gains or loses
input focus.

WindowListener

Defines seven methods to recognize when a
window is activated,

closed, deactivated, deiconified, iconified, opened,
or quit.

Table: Commonly Used Event Listener Interfaces

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [/ CGPA->PERCENTAGE

FB/IG/TW: @educlashco

Visit educlash.com for more

[Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

The following
sections examine the specific methods that are contained in each interface.

1.5.1 The ActionlListener Interface

This interface defines the method that an object must implement to listen for action events on AWT
components. When an ActionEvent occurs, an AWT component notifies its

registered ActionListener objects by invoking their actionPerformed () methods.

Its general form is shown here:

volid actionPerformed (ActionEvent ae)

1.5.2 The AdjustmentListener Interface

This interface defines the method that an object must implement to listen for adjustment events on
AWT components. When an AdjustmentEvent occurs, an AWT component notifies its
registered AdjustmentListener objects by invoking

their adjustmentvValueChanged () methods.

Its general form is shown here:

void adjustmentValueChanged (AdjustmentEvent ae)

1.5.3 The ComponentListener Interface

This interface defines the methods that an object must implement to listen for component events on
AWT components. When a ComponentEvent occurs, an AWT component notifies its

registered ComponentListener objects by invoking one of their methods.

Their general forms are shown here:

vold componentResized (ComponentEvent ce)
void componentMoved (ComponentEvent ce)
void componentShown (ComponentEvent ce)
void componentHidden (ComponentEvent ce)

1.5.4 The ContainerlListener Interface

This interface contains two methods. When a component is added to a container,
componentAdded () isinvoked. When a component is removed from a container,

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more

componentRemoved () isinvoked.
Their general forms are shown here:

void componentAdded (ContainerEvent ce)
void componentRemoved (ContainerEvent ce)

1.5.5 The FocusListener Interface

This interface defines the methods that an object must implement to listen for focus events on AWT
components. When a FocusEvent occurs, an AWT component notifies its

registered FocusListener objects by invoking one of their methods.

Their general forms are shown here:

volid focusGained (FocusEvent fe)
volid focusLost (FocusEvent fe)
1.5.6 The ItemListener Interface

This interface defines the itemStateChanged () method that is invoked when the state
of an item changes.
Its general form is shown here:

void itemStateChanged (ItemEvent ie)

1.5.7 The KeyListener Interface

This interface defines the methods that an object must implement to listen for key events on AWT
components. When a KeyEvent occurs, an AWT component notifies its

registered KeyListener objects by invoking one of their methods.

The general forms of these methods are shown here:

void keyPressed (KeyEvent ke)

void keyReleased (KeyEvent ke)
void keyTyped (KeyEvent ke)

1.5.8 The Mouselistener Interface

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
This interface defines the methods that an object must implement to listen for mouse events on AWT
components. When a MouseEvent occurs, an AWT component notifies its
registered MouseListener objects by invoking one of their methods.
The general forms of these methods are shown here:

void mouseClicked (MouseEvent me)
void mouseEntered (MouseEvent me)
vold mouseExited (MouseEvent me)

vold mousePressed (MouseEvent me)
vold mouseReleased (MouseEvent me)

1.5.9 The MouseMotionlListener Interface

This interface defines two methods. The mouseDragged () method is called multiple
times as the mouse is dragged. The mouseMoved () method is called multiple times as
the mouse is moved.

Their general forms are shown here:

void mouseDragged (MouseEvent mme)

void mouseMoved (MouseEvent mme)

1.5.10 The MouseWheelListener Interface

This interface defines the mouseWheelMoved () method that is invoked when the
mouse wheel is moved.

Its general form is shown here:

void mouseWheelMoved (MouseWheelEvent mwe)

1.5.11 The TextListener Interface
This interface defines the textChanged () method that is invoked when a change occurs
in a text area or text field.

Its general form is shown here:

void textChanged (TextEvent te)

1.5.12 The WindowFocusListener Interface

This interface defines two methods windowGainedFocus () and windowLostFocus ().

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
These are called when a window gains or losses input focus.
Their general forms are shown here:

volid windowGainedFocus (WindowEvent wfe)
volid windowLostFocus (WindowEvent wfe)

1.5.13 The WindowListener Interface

This interface defines the methods that an object must implement to listen for window events on AWT
components. When a WindowEvent occurs, an AWT component notifies its

registered WindowListener objects by invoking one of their methods.

The general forms are shown here:

void windowActivated (WindowEvent we)
volid windowClosed (WindowEvent we)

void windowClosing (WindowEvent we)
vold windowDeactivated (WindowEvent we)
vold windowDeiconified (WindowEvent we)
void windowIconified (WindowEvent we)
void windowOpened (WindowEvent we)

1.6 Using the delegation event model

Up to Now you have learned the theory behind the delegation event model and have had

an overview of its various components and its methods, now we will see it in practice. Applet
programming using the delegation event model is quite easy.

The Java involves using listener classes that are effectively "attached" to components to process specific

events. This lends itself well for GUI builders to generate event handling code.
Following steps are required to perform:

1. Implement the appropriate interface in the listener so that it will receive the
type of event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient
for the event notifications.

someComponent.addActionListener (instanceOfMyClass) ;

To see how the delegation model works in practice, we will look at examples that
handle the two most commonly used event generators: the mouse and keyboard.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

1.6.1 Handling Mouse Events

Essentially, we'd use these events to know where the mouse is, either with respect to a GUl component
or in terms of x and y coordinates.

Here's how we'll set up this mouse event handling:

1. Addimplements Mouselistener.

2. Mouse listening is based upon a particular component. For an applet, that's the whole applet.
Thus, we only need the call addMouseListener(this);.

3. Finally, we need to write code to handle the event. Class MouseEvent has
accessors getX() and getY() that get us the coordinates of where the event occurred. We can
store these an use them in other methods. (For example, we could store them and use them
in paint() to draw something.) This time, though, there are five different mouse event methods
we must implement:

e mousePressed(), which is triggered when the mouse is on the component.

e mouseClicked(), which is triggered when the mouse is pressed and released on the
component. (mousePressed() is called first.)

e mouseReleased(), which is triggered when the mouse is released on the component.
(mousePressed() must have been called first.)

e mouseEntered(), which is triggered upon entry to the component.

e mouseExited(), which is triggered upon leaving the component.

Note that when we implement the MouselListener interface, we must provide all five methods. The full
headers look like this:

public void mousePressed (MouseEvent e)

public void mouseClicked (MouseEvent e)

public void mouseReleased (MouseEvent e)

public void mouseEntered (MouseEvent e)

public void mouseExited (MouseEvent e)

One workaround to not needing all five methods is to provide empty braces for those we don't need.
Here is a code to demonstrate the mouse events:

import java.awt.*;

import java.awt.event.*;

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet implements Mouselistener, MouseMotionListener

{
String msg ="";
int mouseX = 0, mouseY = 0; // coordinates of mouse
public void init()
{
addMouselistener(this);
addMouseMotionListener(this);
}
// Handle mouse clicked.
public void mouseClicked(MouseEvent me)
{
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Mouse clicked.";

repaint();

}

// Handle mouse entered.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
public void mouseEntered(MouseEvent me)

{
// save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse entered.";
repaint();
}
// Handle mouse exited.
public void mouseExited(MouseEvent me)
{
// save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse exited.";
repaint();
}
// Handle button pressed.
public void mousePressed(MouseEvent me)
{
// save coordinates
mouseX = me.getX();
mouseY = me.getY();

msg = "Down";

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [/ CGPA->PERCENTAGE

Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
repaint();

}
// Handle button released.
public void mouseReleased(MouseEvent me)
{
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Up";
repaint();
}
// Handle mouse dragged.
public void mouseDragged(MouseEvent me)
{
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Mouse Dragged";
showStatus("Dragging mouse at " + mouseX + ", " + mouseY);
repaint();
}
// Handle mouse moved.

public void mouseMoved(MouseEvent me)

{

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
// show status

mouseX = me.getX();
mouseY = me.getY();
msg="Mouse Moved";

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());
repaint();

}

// Display msg in applet window at current X,Y location.

public void paint(Graphics g)

{

g.drawString(msg, mouseX, mouseY);

Run applet program as: appletviewer MouseEvents.java

Sample output is shown here:

r | £| Applet Viewer: MouseEvents l'”:“| =) I'_Hh.llI
Applet

Mouse clicked.

Moving mouse at 13, 37

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more

1.7 Adapter classes

Some of the listener interface, such as Mouselistener and ComponentListener, include a lot of methods.
The rules for interfaces say that when a class implements an interface, it must include a definition for
each method declared in the interface. For example, if empty is included only using

the mousePressed method of the Mouselistener interface, one ends up including empty definitions
formouseClicked (), mouseReleased (), mouseEntered()and mouseExited().Ifa
specially created nested class is used to handle events, there is a way to avoid this. As a convenience,
the package java.awt.event includes several adapter classes, such as MouseAdapter and
ComponentAdapter. An adapter class is a class that provides an empty implementation of all
methods in an event listener interface. Adapter classes can be used when one is not interested in all of
the methods of the interface, except one or two. The MouseAdapter class is a trivial class that
implements the MouseListener interface by defining each of the methods in that interface to be
empty. To make the programmer's mouse listener classes, one can extend the MouseAdapter class
and override just those methods of interest. ComponentAdapter and other adapter classes work in
the same way.

Since many of the EventListener interfaces are designed to listen to multiple event subtypes (i.e. the
MouselListener listens to mouse-down, mouse-up, mouse-enter, etc.), the AWT will provide a a set of
abstract "adapter" classes, one which implements each listener interface. This will allow programs to
easily subclass the Adapters and override ONLY the methods representing event types they are
interested in.

The Adapter classes provided by AWT are as follows:

java.awt.event.ComponentAdapter
java.awt.event.ContainerAdapter
java.awt.event.FocusAdapter
Jjava.awt.event.KeyAdapter
java.awt.event.MouseAdapter
java.awt.event.MouseMotionAdapter
java.awt.event.WindowAdapter

Note: There are no default Adapters provided for the semantic listeners, since each of those only
contain a single method and an adapter would provide no real value.

Following Table lists the commonly used adapter classes in java.awt.event and notes the interface that
each implements.

Adapter Class Listener Interface
ComponentAdapter ComponentlListener
ContainerAdapter ContainerlListener
FocusAdapter FocusListener

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.ComponentAdapter.html
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.ContainerAdapter.html
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.FocusAdapter.html
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.KeyAdapter.html
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.MouseAdapter.html
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.MouseMotionAdapter.html
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.awt.event.WindowAdapter.html

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

KeyAdapter KeyListener

MouseAdapter Mouselistener

The following Code demonstrate adapter class:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>
</applet>

*/

public class AdapterDemo extends Applet {

public void init () {

addMouselistener(new MyMouseAdapter (this));

addMouseMotionListener(new MyMouseMotionAdapter (this));

class MyMouseAdapter extends MouseAdapter {
AdapterDemo adapterDemo;
public MyMouseAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App
Visit educlash.com for more
// Handle mouse clicked
public void mouseClicked (MouseEvent me) {

adapterDemo.showStatus ("Mouse Clicked");

class MyMouseMotionAdapter extends MouseMotionAdapter {
AdapterDemo adapterDemo;
public MyMouseMotionAdapter (AdapterDemo adapterDemo) {

this. adapterDemo = adapterDemo;

// Handle Mouse Drag
public void mouseDragged (MouseEvent me) {

adapterDemo.showStatus("Mouse Dragged");

Run applet program as: appletviewer AdapterDemo.java

Sample output is shown here:

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

[

| £ Applet Viewer: AdapterDemo = Li:?-r

Applet

Mouse Clicked

1.8 Inner classes

The idea behind this was that certain names in the program need to be known only in the vicinity where
they are defined. From the beginning, Java adopted this idea of limited scope for variables and methods,
but not for packages.

In Java 1.0, all classes were top level ; all classes were defined at the same level. If a class was known
anywhere in a source file, it was known throughout the file.

Java 1.1 allows classes to be nested within other classes. A class defined inside another class is known as
an inner class. Inner classes are useful for at least two reasons:

* The name of the inner class is known only within its scope. Thus, it does not “pollute” the
namespace of the package.

¢ The code of an inner class can refer directly to names from enclosing scopes, including both
class and instance variables and methods, and local variables of enclosing blocks.

The following code demonstrate the normal case:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MousePressedDemo" width=300 height=100>

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
</applet>
*/

public class MousePressedDemo extends Applet

{
public void init ()

{
addMouselistener(new MyMouseAdapter (this));

class MyMouseAdapter extends MouseAdapter
{

MousePressedDemo mousePressedDemo;

public MyMouseAdapter (MousePressedDemo mousePressedDemo)

{

this.mousePressedDemo = mousePressedDemo;

// Handle mouse clicked

public void mouseClicked (MouseEvent me)

{

mousePressedDemo.showStatus ("Mouse Clicked");

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Output:
@Appiet‘h"iewer: AdapterDemo I.":-' =] ﬁ
Applet

Mouse Clicked

The following listing shows how the preceding program can be improved
by using an inner class. Here, InnerClassDemo is a top-level class that extends
Applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="InnerClassDemo" width=300 height=100>
</applet>

*/

public class InnerClassDemo extends Applet

{

public void init ()

{

addMouselistener(new MyMouseAdapter ());

}

class MyMouseAdapter extends MouseAdapter
{

public void mouseClicked (MouseEvent me)

{
showStatus ("Mouse Clicked");

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Output:

-~

|| Applet Viewer hnerCIassDemnl[= | (=] LﬂhJ

Applet

fMouse Clicked

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE [CGPA->PERCENTAGE
Visit educlash.com for more

FB/IG/TW: @educlashco [Vipin Dubey]

