1.Write a features of java programming or java?

Ans: There is given many features of java. They are also known as java buzzwords. The
Java Features given below are simple and easy to understand.

Olyect-Oriented
Distributed | , Simple
Multithreaded \ Secured

High
Performance

o / I \\ vp

Dyynamic Architecture Portable
Neytral

— Futl.l'u of Java

Simple
Object-Oriented
Portable

Platform independent
Secured

Robust
Architecture neutral
Dynamic
Interpreted

10. High Performance
11. Multithreaded

12. Distributed

o 0 NEEEnEE W N =

Simple

According to Sun, Java language is simple because:
syntax is based on C++ (so easier for programmers to learn it after C++).

removed many confusing and/or rarely-used features e.g., explicit pointers,
operator overloading etc.

No need to remove unreferenced objects because there is Automatic Garbage
Collection in java.

Object-oriented

Object-oriented means we organize our software as a combination of different types
of objects that incorporates both data and behaviour.

Object-oriented programming(OOPs) is a methodology that simplify software
development and maintenance by providing some rules.

Basic concepts of OOPs are:
1. Object

Class

Inheritance

Polymorphism

Abstraction

o kN

Encapsulation

Platform Independent

|
LY

. y o 4 N
a ']
1 §
a ']

A platform is the hardware or software environment in which a program runs.

MarfUs AW
.
- —
L
L

There are two types of platforms software-based and hardware-based. Java provides
software-based platform.

The Java platfarm differs from most other platforms in the sense that it is a software-
based platform that runs on the top of other hardware-based platforms. It has two
components:

1. Runtime Environment
2. API{Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac/OS etc.
Java code is compiled by the compiler and converted into bytecode. This bytecode is a
platform-independent code because it can be run on multiple platforms i.e. Write Once
and Run Anywhere(WORA).

Secured

Java is secured because:

o MNo explicit pointer
o Java Programs run inside virtual machine sandbox

- Uses Runtime Environment o Uses Runtime Envirenment

of Operating System ! / of its own \
- . -.] F II
f y \ / . \ \
|.L C++)] JAVA "

» v Application . ~ Application . ||
\ \W’ I"’ _ \ \'H.._‘_‘__r,,_—-"{ 4 I."
1.\ -’,' i Y . ; ’ I.‘I.-"

M os - . o JUM 7

o Classloader: adds security by separating the package for the classes of the local
file system from those that are imported from network sources,

o Bytecode Verifier: checks the code fragments for illegal code that can violate
access right to objects.

o Security Manager: determines what resources a class can access such as reading
and writing to the local disk.

These securities are provided by java language. Some security can also be provided by
application developer through SSL, JAAS, Cryptography etc.

Robust

FRobust simply means strong. Java uses strong memory management. There are lack of
pointers that avoids security problem. There is automatic garbage collection in java. There
is exception handling and type checking mechanism in java. All these points makes java
robust.

Architecture-neutral

There is no implementation dependent features e.g. size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and
4 bytes of memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for
both 32 and &4 bit architectures.

Portable

We may carry the java bytecode to any platform.

High-performance

Java is faster than traditional interpretation since byte code is "close” to native code
still somewhat slower than a compiled language (e.g., C++)

Distributed

We can create distributed applications in java. RMI and EJB are used for creating
distributed applications. We may access files by calling the methods from any machine
on the internet.

Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs
that deal with many tasks at once by defining multiple threads. The main advantage of
multi-threading is that it doesn't occupy memory for each thread. It shares a common
memory area. Threads are important for multi-media, Web applications etc.

2.Explain the JVM(JAVA VIRTUAL MACHINE)
architecture?

Ans: VM (Java Virtual Maching) is an abstract machine. It is a specification that provides
runtime environment in which java bytecode can be executed.

WMs are available for many hardware and software platforms (i.e. JVM is platform
dependent).

JVM is the engine that drives the java code.

Moastly in other Programming Languages, compiler produce code for a particular system
but Java compiler produce Bytecode for a Java Virtual Machine.

Bytecode is an intermediary language between Java source and the host system.

It is the medium which compile Java code to bytecode which get interpret an different
machine and hence it makes it Plattorm/Operating system independent.

What is JVM

Itis:

1. A specification where working of Java Virtual Machine is specified. But
implementation provider is independent to choose the algorithm. Its
implementation has been provided by Sun and other companies.

2. An implementation Its implementation is known as JRE (Java Runtime
Environment).

3. Runtime Instance Whenever you write java command on the command prompt
to run the java class, an instance of JVM is created.

What it does

The VM performs following operation:

o Loads code
o Verifies code
o Executes code

o Provides runtime environment

M provides definitions for the:

o Memory area

o Class file format

o Register set

o Garbage-collected heap
o Fatal error reporting etc.

Internal Architecture of JVM

Let's understand the internal architecture of JVM. It contains classloader, memory
area, execution engine etc.

JAVA

1) Classloader
Classloader is a subsystem of JVM that is used to load class files.

2) Class(Method) Area

Class(Method) Area stores per-class structures such as the runtime constant pool, field
and method data, the code for methods.

3) Heap
It is the runtime data area in which objects are allocated.

4) Stack

Java Stack stores frames.It holds local variables and partial results, and plays a part
in method invocation and return.

Each thread has a private JVM stack, created at the same time as thread.

A new frame is created each time a method is invoked. A frame is destroyed when its
method invocation completes.

5) Program Counter Register

PC (program counter) register. It contains the address of the Java virtual machine
instruction currently being executed.

6) Native Method Stack

It contains all the native methods used in the application.

7) Execution Engine

It contains:
1) A virtual processor
2) Interpreter: Read bytecode stream then execute the instructions.

3) Just-In-Time(JIT) compiler: It is used to improve the performance JIT compiles
parts of the byte code that have similar functionality at the same time, and hence
reduces the amount of time needed for compilation.Here the term ?compiler? refers
to a translator from the instruction set of a Java virtual machine (JVM) to the
instruction set of a specific CPU.

How JVM is created(Why JVM is virtual):

When JRE installed on your machine, you got all required code to create JVM.
JVM is created when you run a java program, e.g. If you create a java

program named FirstavaProgram.java. To compile use — java
FirstlavaProgram.java and to execute use — java FirstlavaProgram. When you

run second command - java FirstlavaProgram, JVM is created. That's why it is
virtual.

Lifetime of JVYM:

When an application starts, a runtime instance is created. When application

ends, runtime environment destroyed. If n no. of applications starts on one
machine then n no. of runtime instances are created and every application run
on its own JVM instance.

Main task of JVM:

« 1. Search and locate the required files.

« 2. Convert byte code into executable code.
« 3. Allocate the memory into ram

« 4. Execute the code.

« 5. Delete the executable code.

3. Explain the primitive & non-primitive
datatype in java?

Ans: A data type is a classification of data, which can store a specific type of
information. Data types are primarily used in computer programming, in which
variables are created to store data. Each variable is assigned a data type that
determines what type of data the variable may contain.

The term “"data type" and "primitive data type" are often used interchangeably.
Primitive data types are predefined types of data, which are supported by the
programming language. For example, integer, character, and strning are all primitive
data types. Programmers can use these data types when creating variables in their
programs. For example, a programmer may create a vanable called "lastname" and
define it as a string data type. The variable will then store data as a string of
characters.

NMon-primitive data types are not defined by the programming language, but are
instead created by the programmer. They are someumes called "reference variables,"
or "object references,” since they reference a memory location, which stores the data.
In the Java programming language, non-primitive data types are simply called
"objects" because they are created, rather than predefined. While an object may
contain any type of data, the information referenced by the object may still be stored
as a primitive data type.

A variable is a named memory location or a name given to a memory location. Like other
languages in java also used to store the data.For example, If you want store a value 10 in
memory location, one write as

Example: int a=10

Here 'a’ is the name give to the memory location where the value of '10' is located
and the word ' int' tells that what type of data we are storing in that memory location. So,
it is called " data type". Just like this, in java it is necessary to tell what type of data we are
handling to JVM and to this we have data types.

" java is a strongly types languages" that in java it is necessary to tell what type of
data we are handling before it can be used and it also tells what types of operation that
can be carries out on this. There mainly two types of data types are available in java.

Data Type
Primitive Non-Primitive

A —— String
Boolean Numeric Array

A EtC.

Character Integral

Integer Floating-point

v v ﬂ\ /\
boolean char byte short int long oat double

1. Java Primitive Data Types (OR) Java Basic data types

2. Java Non-Primitive Data Types (OR) Derived data types

Primitive Or Basic Data Types In Java

java define eight primitive data types namely byte, short,
int,long, char, float, double and boolean. These are also called as intrinsic or built-in types.
The integer group includes byte, short, int, and long and the floating group includes float
and double.

Byte: A byte data type is a 8 bit signed two's complement integer. It can be used as
alternative to integer where large amount of arrays what to store information. The
maximum value is -128 and the minimum value is +127

Short: short is a signed 16 bit type. It has a range from -32,768 to 32,767. It is probably
the least used data type.

Int: The most commonly used data types is integer.It is signed 32-bit type that has a range
from 2¢2 and a maximum value of 22-1. In Java SE 8 and later, you can use the 1ong data
type to represent an unsigned 64-bit long, which has a minimum value of 0 and a
maximum value of 25-1

long: long is a signed 64-bit type and is useful for those occasions where an integer type
is not enough to hold the desired value.We make integers long by appending "L" or "I" at
the end of the number as

123L or 123l

integer types can hold only whole numbers and therefore we use another type known as
floating point type to hold numbers containing fractional parts.

float: the type float specifies a single precision value that uses 32 bits of storage.
Variables of type float are useful when you need a fractional component, but don't require
a large degree of precision. For example, float can be useful when representing dollars
and cents.

double: Double precision, as denoted by the double keyword, uses 64 bils to store a
value.

char: In C/C++ the character data type can store 8 bits. But it is not the case in java.
Because java follows unicode system to represent all the characters found in all the human
languages. So, it requires 16 bits.

boolean: a boolean is a 1 bit data type used to represent two values TRUE or FALSE.

Default Values

It is always not necessary to store value in variable. When it is the case it can
store some default as either zero or null depending on the data type. Here are basic
primitive data type and their default values.

[Type Contains DeEuhﬂ Size Range

lbaolm true of false falae |I] bit [NA

ichaz |[Unicode charactes ||\u0c00[16 bits|\u0000 to \urrFrF

byte [Signed integes 0 8 bas |-128 10 127

lsnoze [Signed integes 0 [16 bins[-32768 10 32767

linz |[Signed integer 0 |32 bits|-2147483648 10 2147483647

1ong [Signed integer o je4 bits|-9223372036854775808 10 9223372036854775807
f1cec ||IEEE 754 floating point (0.0 |32 bits |x1.4E-45 to =3 4028235E+38 B
lasucle ||[EEE 734 floating point|0.0 ||64 bits [24.9E-324 10 +1. 7976931348623 15 7E+308

In java we can use "String" as a data type. It represents a group of characters like "hello",
"world" ext..The simplest way to create String is by storing a group of characters into a

String type variable as:
String str=" hello";
What is the difference between integer and int in java ?
In java integer is a class and int is primitive data type.
What is the difference between float and double?

float can represent 7 digits accurately after decimal point, where as
double can represent up to 15 digits accurately after decimal point.

What is a Unicode system?

Unicode system is an encoding system standard that
provides a unique number for every character, no matter what the platform, program, or
language is. Unicode uses 2 bytes to represent a single character.

Non Primitive Data Types In Java

Also refred to as derived types. java supports non primitive data
types classes, interfaces, and arrays ..ext and which will be covered in later topics.

4. What is abstract class? explain with
example?

Ans: Abstract class in Java

A class that is declared with abstract keyword, is known as abstract class in java. It can
have abstract and non-abstract methods (method with body).

Before learning java abstract class, let's understand the abstraction in java first.

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only
functionality to the user.

Another way, it shows only important things to the user and hides the internal details for
example sending sms, you just type the text and send the message. You don't know the
internal processing about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstaction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)

Abstract class in Java

A class that is declared as abstract is known as abstract class. It needs to be extended
and its method implemented. It cannot be instantiated.

Example abstract class

. abstract class A{}

abstract method

VO NGOGWmLEWNRE

A method that is declared as abstract and does not have implementation is known as
abstract method.

Example abstract method

abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

In this example, Bike the abstract class that contains only one abstract method run. It
implementation is provided by the Honda class.

abstract class Bike{
abstract void run();
}
class Honda4 extends Bike{
void run(){System.out.printin("running safely..");}
public static void main(String args[]){
Bike obj = new Honda4();
obj.run();
}

10.}

n b WwhE

Output: running safely..

Understanding the real scenario of abstract class

In this example, Shape is the abstract class, its implementation is provided by the
Rectangle and Circle classes. Mostly, we don't know about the implementation class (i.e.
hidden to the end user) and object of the implementation class is provided by the factory
method.

A factory method is the method that returns the instance of the class. We will learn about
the factory method later.

In this example, if you create the instance of Rectangle class, draw() method of Rectangle
class will be invoked.

File: TestAbstractionl.java

abstract class Shape{

abstract void draw();

}

//In real scenario, implementation is provided by others i.e. unknown by end user
class Rectangle extends Shape{

O 0 N;

void draw(){System.out.printin("drawing rectangle");}

}

class Circlel extends Shape{
void draw(){System.out.printin("drawing circle");}

10.}

11.//In real scenario, method is called by programmer or user

12.class TestAbstraction1{

13. public static void main(String args[]){

14.Shape s=new Circlel();//In real scenario, object is provided through method e.g. getSh

ape() method

15.s.draw();
16.}
17.}

Output: drawing cirele

Points to Remember

1. Abstract classes are not Interfaces. They are different, we will study this when we
will study Interfaces.

2. An abstract class may or may not have an abstract method. But if any class has
even a single abstract method, then it must be declared abstract.

3. Abstract classes can have Constructors, Member variables and Normal methods.

4. Abstract classes are never instantiated.

5. When you extend Abstract class with abstract method, you must define the abstract
method in the child class, or make the child class abstract.

When to use Abstract Methods & Abstract Class?

Abstract methods are usually declared where two or more subclasses are expected to
do a similar thing in different ways through different implementations. These subclasses
extend the same Abstract class and provide different implementations for the abstract
methods.

Abstract classes are used to define generic types of behaviors at the top of an object-
oriented programming class hierarchy, and use its subclasses to provide implementation
details of the abstract class.

5. What is Wrapping class? Explain with
example?

Ans: A Wrapper class is a class whose object wraps or contains a primitive data types.
When we create an object to a wrapper class, it contains a field and in this field, we
can store a primitive data types. In other words, we can wrap a primitive value into a
wrapper class object.

Need of Wrapper Classes

1. They convert primilive dala lypes inio objects. Objects are needed if we wish to modify the
arguments passed into a method (because primitive types are passed by value).

2. The classes in java.util package handles only objects and hence wrapper classes help in this
case also.

3. Data structures in the Collection framework, such as ArrayList and Vector, store only objects
(reference lypes) and not primitive types.

4. An object is needed to support synchronization in multithreading.

Primitive Data types and their Corresponding Wrapper class

Primitive Data Wrapper Class

Type
char Character
byte Eyte
short Short
long Integer
float Float

double Double

boolean Boolean

Autoboxing and Unboxing
Autoboxing: Automatic conversion of primitive types to the object of their
corresponding wrapper classes is known as autoboxing. For example — conversion
of int to Integer, long to Long, double to Double etc.
Example:

/¥ Java program to demonstrate Rutcboxing

import java.util.ArraylList;

claas Autoboxing

i
public staticvoidmain(String[] args)
{

charch = 'a';;

}

Output:

25

£/ Autoboxing- primitive to Character cokhject conversion

Character a = ch;

Arraylist<Integer> arraylist = newArraylList<Integer>():

f/ Butoboxing because ArrayList stores only ckhjects

arrayLlist.add(25);

£/ printing the values from chject

System.out.printlni{arraylList.get (0));

Unboxing: It is just the reverse process of autoboxing. Automatically converting an
object of a wrapper class to its corresponding primitive type is known as unboxing. For

example — conversion of Integer to int, Long to long, Double to double etc.
{7/ Java program to demonstrate Unboxing

import java. util.Arraylist;

class Unboxing

public static veidmain(String[] args)

L

Character ch = 'a';

/7 unboxing - Character object to primitive conversion

chara = ch:

Arraylist<Integer> arraylist = newArraylList<Integer>():

arraylist.add(24);

£/ unboxing becaugse get method returns an Integer cbkject

int num = arraylist.get(0);

// printing the values from primitive data types

Systen.out.println(num);

Qutput:
24
Object
| | |
Number Boolean Charujii=|
boolean char

I I |

] il Ll ion | (o

byte short int float double

Wrapper classes in Java

Implementation

/4 Java program to demonstrate Wrapping and UnWrapping

/f in Java Classes

class WrappingUnwrapping

{
public static voidmain(String args(])
{

£/ byte data type
bytea = 1;

{4 wrapping arcund Byte cbject

Eyte byteob] = newByte(a):

{7/ int data type
intbk = 10:

/ fwrapping around Integer object

Integer intobj = new Integer (b))

£/ float data type
floatc = 1B.6f;

£/ wrapping arcund Float object

Float floatob) = newFloat(c);

/f double data type

doubled = 250.5;

£/ Wrapping arcund Double object
Double doubleoldy = newDouble(d);

/7 char data type

chare="g";

/{ wrapping arocund Character cbject

Character charobj==;

// printing the values from objects

System.out.println("Values of Wrapper ckjects (printing as objects)|");
System.out.println("Byte object byteckhiy: "+ byteobi)s

System. out.println("Integer abject intobj: "+ intobij):
Systen.cout.println("Float cbiject floatcki: "+ floatobi):
System.out.println("Double object doubleckj: "+ doubleobk]j);

System.out.println("Character cbject charchkj: "+ chareckj):

{7/ objects to data types (retrieving data types from objects)
A/ unwrapping objects to primitive data types
bytebv = byteoki;

int iv = intokj:

float fv = floatok)y;
dovbledv = doubleaolky;
char ev = charcokij;

£/ printing the values from data types
System.out.println{"Unwrapped values (printing as data types)|™):
System.out.println{"byte values, bv: "+ bv);
System.out.println("int value, iv: "+ 1iv);
Systen.out.println{"float value, : "4 fv)
System.out.println("double value, dv: "+ dv);

System.out.println("char value, cv: "+ cv};

6. Explain super method & super keyword?

Ans: The super keyword in java is a reference variable that is used to refer parent
class objects. The keyword “super” came into the picture with the concept of
Inheritance. It is majorly used in the following contexts:
1. Use of super with variables: This scenario occurs when a derived class and base
class has same data members. In that case there is a possibility of ambiguity for the
JVM. We can understand it more clearly using this code snippet:
/* Basme cla=ms vehicle */
class Vehicle
{

int maxSpeed = 120;
}

/* sub class Car extending vehicle */
clags Car extends Vehicle
{

int maxSpeed = 180;

volddisplay()

{
/* print maxSpeed of bage clags (vehicle) */
System.out.println{"Maximum Speed: "+ super.maxSpeed);

/* Driver program to test */f
clazs Test
{
public static voildmain(String[] args)
{
Car =mall = newCar();
small.display():
}
}
Run on IDE

Qutput:

Maximum Speed: 128

In the above example, both base class and subclass have a member maxSpeed. We
could access maxSpeed of base class in sublcass using super keyword.

2. Use of super with methods: This is used when we want to call parent class method.
So whenever a parent and child class have same named methods then to resolve
ambiguity we use super keyword. This code snippet helps to understand the said
usage of super keyword.
/* Base class Person */
class Person
{

voidmessage ()

{

System.out.println("Thi=s i= person class");
}

}

/* Subclass Student */f
clazs Student extends Person
{

voidmeszage ()

{
System.out.println("This is student class"):

}

#/ Hote that display() i= only in Student cla=s
volddisplay ()
{

£4 will invoke or call current class message() method

message():

ff will inwvoke or cell parent class mesasage() method
super.message();

}

/* Driver program to test */
class Teat

public static voeidmain(String args([])
{
Student 3 = new Studenti):

£/ ecalling display() of Student
s.displayi(}:
}
}
Run on IDE

Qutput:

This is student class
This is person class

In the above example, we have seen that if we only call method message() then, the
current class message() is invoked but with the use of super keyword, message() of

superclass could also be invoked.

3. Use of super with constructors: super keyword can also be used to access the
parent class constructor. One more important thing is that, “super' can call both
parametric as well as non parametric constructors depending upon the situation.

Following is the code snippet to explain the above concept:
#* superclass Person */
class Ferson
{
Personi)

{
Systen.out.println("Person class Constructeor™):;

/* subclass Student extending the Person class */
clazs Student extends Person
l
Student [}
{
£/ invoke or call parent class constructor
super ()

Systen.out.println{"Student class Constructor");

}

/* Driver program to test*/
class Test
{
public static voidmain(String([] args)
{
Student s = new Student();

}
}
Runon IDE
Output:

Person class Constructor

Student class Constructor

In the above example we have called the superclass constructor using keyword ‘super’
via subclass constructor.

Other Important points:

1. Call to super() must be first statement in Derived(Student) Class constructor.

2. If a constructor does not explicilly invoke a superclass constructor, the Java compiler
automatically inserts a call to the no-argument constructor of the superclass. If the superclass
does not have a no-argument construclor, you will gel a compile-time error. Object does have
such a constructor, so if Object is the only superclass, there is no problem.

3. If asubclass constructor invokes a constructor of its superclass, either explicitly or implicitly, you
might think that a whole chain of constructors called, all the way back to the constructor of Object.

This, in fact, is the case. It is called constructor chaining..

7. Explain the reference in java?

Ans: A reference is a value that refers to a another value. Its a convenient way to pass
around objects, which are actually collections of many values. You need a single
address that you can point to and say, "This is where all the object data lives.” While
C++ has a specific type of reference called a pointer, which points to a memory
address, Java references are a higher level abstraction.

In Java, a reference 1s a type category. Reference types

include: classes, interfaces, arrays, enums, and annotations. Java is a pass-by-value
language, but references are themselves a kind of value. This means that when yon
pass a reference type to a method, that method has access to the data and can change
it. But it does not have access to the original reference itself, and cannot change it to
point elsewhere.

8.

What is garbage collection? explain the

use of GC Class? what 1s finalize method?

Ans:

Garbage Collection in Java:

In C/C++, programmer is responsible for both crealion and destruction of objects. Usually
programmer neglects destruction of useless objects. Due to this negligence, at certain point, for
creafion of new objects, sufficient memory may not be available and entire program will terminate
abnormally causing OutOfMemoryErrors.

But in Java, the programmer need not lo care for all those objects which are no longer in use,
Garbage colleclor deslroys these objecls.

Garbage collector is best example of Daemon thread as it is always running in background.
Main objective of Garbage Collector is to free heap memory by destroying unreachable
objects.

Important terms :

1.

woE W

Unreachable objects : An object is said to be unreachable iff it doesn't contain any reference
to it. Also note that objects which are part of island of isolation are also unreachatble.

Integer i = new Integer(4);

f/ the new Integer object is reachable wvia the reference in "i°
1 = null;

f/ the Integer object is no longer reachable.

Integer | = new Integer(4)

Heap Area

I null;

6. Eligibility for garbage collection : An object is said lo be eligble for GC(garbage

collection) iff it is unreachable. In above image, after i = null; integer object 4 in heap area is
eligible for garbage collection.

Ways to make an object eligible for GC

= Even though programmer is not responsible to destroy useless objects but it is highly
recommended to make an object unreachable(thus eligible for GC) if it is no longer required.
* There are generally four different ways to make an object eligible for garbage collection.
1. Nullifying the reference variable
2. Re-assigning the reference variable
3. Object created inside method
4. Island of Isolation
All above ways with examples are discussed in separate article : How to make object eligible
for garbage collection

Ways for requesting JVM to run Garbage Collector
* (Once we made object eligible for garbage collection, it may not destroy immediately by garbage
collector. Whenever JVM runs Garbage Collector program, then only object will be destroyed.
Bul when JVM runs Garbage Collector, we can nol expect.
= We can also request JVM 1o run Garbage Collector. There are two waystodo it :

1. Using System.gc() method : System class contain static method gef) for
requesting JVM to run Garbage Collector.

2. Using Runtime.getRuntime().gc() method : Runtime class allows the
application to interface with the JVM in which the application is running. Hence
by using its g¢() method, we can request JVM to run Garbage Collector.

ff Java program to demonstrate requesting
ff VM to run Garbage Collector
public class Test
{
public staticvoidmain(String([] args) throws InterruptedException
{
Teat tl = new Test();

Test t2 = newTest():

ff Mullifying the reference variable
tl = null;

S requesting JVM for running Garbage Collector

System.gc()

F/ Mullifying the reference variable

t2 = null;

// requesting JVM for running Garbage Collector

Runtime.getRBuntime().gc();

@0verride
ff fimalize method is called on object once
// before garbage collecting it
protectedveoidfinalize() throws Throwable
{
System. out.println("Garbage collector called"):

System. out.println{"Object garbage collected : "+ this);

Qutput:

®* Garbage collector called
® Object garbage collected : Test@46deafl2
® Garbage collector called
® Object garbage collected : Test@481775b8

* Note :
1. There is no guarantee that any one of above two methods will definitely run
Garbage Collector.
2. The call System.gc()is effectively equivalent to the call
: Runtime.getRuntime().gc()

Finalization

= Just belore destroying an object, Garbage Collector calls finalize() method on the object to
perform cleanup activities. Once finalize{) method completes, Garbage Collector destroys that
object.

= finalize() method is present in Object class with following prototype.

= protected void finalize() throws Throwable

Based on our requirement, we can override finalize() method for perform our cleanup activities
like closing connection from database.
Note :
1. The finalize() method called by Garbage Collector not JVM. Although Garbage Collector is one
of the module of JVYM.

2. Objecl class finalize() method has empty implementation, thus it is recommended to
override finalize() method to dispose of system resources or to perform other cleanup.

3. The finalize() method is never invoked more than once for any given object.

4. If an uncaught exception is thrown by the finalize{) method, the exceplion is ignored and
finalization of thai object terminates.

finalize() method

Sometime an object will need to perform some specific ask before it is destroyed such as
closing an open connection or releasing any resources held. To handle such

situation finalize() method is used. finalize() method is called by garbage collection thread
before collecting object. Iis the last chance for any object to perform cleanup utility.

Signature of finalize() method

Some Important Points to Remember

1. finalize() method is defined in java.lang.Object class, therefore it is available to all the
classes,

2. finalize() method is declare as proctected inside Object class.

3. finalize() method gets called only once by a Daemon thread named GC (Garbage

Collector)thread.

ge() Method

ge() method is used to call garbage collector explicitly. However ge() method does not
guarantee that JVM will perform the garbage collection. It only request the JVM for garbage
collection. This method is present in System and Runtime class,

Example for gc() method

public Class

9.Explain the inner class?

Ans:

Java inner class is defined inside the body of another class. Java inner class can be
declared private, public, protected, or with default access whereas an outer class
can have only public or default access.

Java Nested classes are divided into two types.

1. static nested class

If the nested class is static, then it's called static nested class. Static nested
classes can access only static members of the outer class. Static nesled class
is same as any other top-level class and is nested for only packaging
convenience.

Static class object can be created with following statement.

—
OuterClass.StaticNestedClass nestedObject =

new OuterClass.StaticNestedClass();

java inner class

Any non-static nested class is known as inner class in java. Java inner class is
associated with the object of the class and they can access all the variables and

methods of the outer class.

Since inner classes are associated with instance, we can't have any static variables
in them.

1. Obiject of java inner class are part of the outer class object and to create an
instance of inner class, we first need to create instance of outer class.

Java inner class can be instantiated like this;

CuterClass outerObject = new QuterClass();

CuterClass.InnerClass lnnerObject = outerObject.new
InnerClass () ;

There are two special kinds of java inner classes.

1.local inner class

If a class is defined in a method body, it's known as local inner class.

Since local inner class is not associated with Object, we can't use private,
public or protected access modifiers with it. The only allowed modifiers are
abstract or final.

A local inner class can access all the members of the enclosing class and local
final variables in the scope it's defined.

Local inner class can be defined as:

public woid print() {
//local inner class inside the method
class Logger {
String name;

}

//instantlate local inner class in the method to
use

Logger logger = new Logger():

2. anonymous inner class

A local inner class without name is known as anonymous inner class. An
anonymous class is defined and instantiated in a single statement.

Anonymous inner class always extend a class or implement an interface. Since
an anonymous class has no name, it is not possible to define a constructor for
an anonymous class.

Anonymous inner classes are accessible only at the point where it is defined.
It's a bit hard to define how to create anonymous inner class, we will see it's
real time usage in test program below.

Here is a java class showing how to define java inner class, static nested class, local
inner class and anonymous inner class.

InnerClassTest. java

package com.journaldev.nested;

import java.util.Arrays;
//nested classes can be used in import for easy instantiation
import com.journaldev.nested.OuterClass. InnerClass;

import com. journaldev.nested.OuterClass.StaticNestedClass;

public class InnerClassTest {

public static void main(String[] args) {

QuterClass outer = new OuterClass(l,2,3,41):

//static nested classes example

StaticNestedClass staticNestedClass = new
StaticNestedClass () ;

StaticMestedClass staticlNestedClassl = new
StaticNestedClass():

System.out.println(staticNestedClass.getName()):

staticNestedClass.d=10;
System.out.println(staticNestedClass.d);

System.out.println(staticNestedClassl.d);

//inner class example

InnerClass innerClass = outer.new InnerClass();
System.out.println(innerClass.getName());
System.out.println(innerClass);
innerClass.setValues();

System.out.println(innerClass);

//calling method using local inner class

cuter.print ("Outer™);

//calling method using anonymous inner class

System.out.println(Arrays.toString(outer.getFilesInDir ("src/c
om/ journaldev/nested", ".java")));

System.out.println(Arrays.toString(outer.getFilesInDir ("bin/c
om/journaldev/nested", “.class")));

}

Benefits of Java Inner Class

1. If aclass is useful to only one class, it makes sense to keep it nested and
together. It helps in packaging of the classes.

2. Java inner classes implements encapsulation. Note that inner classes can
access outer class private members and at the same time we can hide inner
class from outer world.

3. Keeping the small class within top-level classes places the code closer to
where it is used and makes code more readable and maintainable.

10. What is package? Define a package syntax
in java?

Ans: Packages in Java is a mechanism to encapsulate a group of classes,
interfaces and sub packages. Many implementations of Java use a
hierarchical file system to manage source and class files. It is easy to organize
class files into packages. All we need to do is put related class files in the
same directory, give the directory a name that relates to the purpose of the
classes, and add a line to the top of each class file that declares the package
name, which is the same as the directory name where they reside.

In java there are already many predefined packages that we use while
programming.

For example: javalang, java.io, java.uti etc.
However one of the most useful feature of java is that we can define our own
packages

f usin
Before discussing how to use them Let see why we should use packages.

« Reusability: Reusability of code is one of the most important
requirements in the software industry. Reusability saves time, effort and
also ensures consistency. A class once developed can be reused by any
number of programs wishing to incorporate the class in that particular
program.

« Easy to locate the files.

« Inreal life situation there may arise scenarios where we need to define
files of the same name. This may lead to “name-space collisions”.
Packages are a way of avoiding “name-space collisions”.

Types of package:

1) User defined package: The package we create is called user-defined
package.

2) Built-in package: The already defined package like java.io.*, java.lang.” etc
are known as built-in packages.

Defining a Package:
This statement should be used in the beginning of the program to include that

program in that particular package.
package <package name:;

Example:

package tools;

public class Hammer {
public void id ()
{

}
}

Points to remember:
1. At most one package declaration can appear in a source file.
2. The package declaration must be the first statement in the unit.

System.,out.println (“"Hammer");

Naming conventions:
A global naming scheme has been proposed to use the internet domain
names to uniquely identify packages. Companies use their reversed Internet

domain name in their package names, like this:
com.company.packageName

How to Use a Package:
1. We can call it by its full name. For instance,

com.myPackagel.myPackage2 myNewClass = new com.myPackagel.myPackage2();
However this method is very time consuming. So normally we use the second
method.

2. We use the "import” keyword to access packages. If you say

import com.myPackage1.myPackage2, then every time we type “myPackage2”, the
compiler will understand that we mean com.myPackagel . myPackage2. SO we can
do:

import com.myPackagel.myPackage2;
class myClass {
myPackage2 myNewClass= new myPackage2 ();

am

}
There are two ways of importing a package:
Importing only a single member of the package

! /here ‘subclass’ is a java file in myPackage2
import com.myPackagel.myPackage2.subClass;
class myClass {

subClass myNewClass= new subClass();

am.

}
Importing all members of a package.

import com.myPackagel.*;

import java.sql.* ;

Also, when we use *, only the classes in the package referred are imported,
and not the classes in the sub package.

The Java runtime automatically imports two entire packages by default:
The java.lang package and the current package by default (the classes in the
current folder/directory).

Points to remember:
1. Sometimes class name conflict may occur. For example:

There are two packages myPackage1 and myPackage2.Both of these
packages contains a class with the same name, let it be myClass.java. Now both
this packages are imported by some other class.

import myPackagel.*;

import myPackage2.*;

This will cause compiler error. To avoid these naming conflicts in such a
situation, we have to be more specific and use the member’s qualified name

to indicate exactly which myClass java class we want:

myPackagel.myClass myNewClassl = new myPackagel.myClass ();
myPackage2 .myClass myNewClass2 = new myPackagel.myClass ();

2. While creating a package, which needs some other packages to be
imported, the package statement should be the first statement of the program,
followed by the import statement.

Compiling packages in java:

The java compiler can place the byte codes in a directory that corresponds to
the package declaration of the compilation unit. The java byte code for all the
classes(and interfaces) specified in the source

files myClass1 java and myClass2.java will be placed in the directory

named myPackage1/myPackage? , as these sources have the following package
declaration

package myPackagel.myPackagel;

The absolute path of the myPackage1/myPackage?2 directory is specified by
using the —d (destination directory) option when compiling with the javac
compiler.

Assume that the current directory is /packages/project and all the source files
are to be found here,the command,

javac -d .filel.java file2.java

Issued in the working directory will create ./ myPackaget/myPackage2(and any sub
directories required) under the current directory, and place the java byte code
for all the classes(and interfaces) in the directories corresponding to the
package names. The dot (.) after the —d option denctes the current directory.
Without the —d option, the default behaviors of the java compiler is to place all
the class files in the current directory rather than the appropriate sub
directories.

How do we run the program?
Since the current directory is /packages/project and we want to run file1.java,the
fully qualified name of the file1 class must be specified in the java command,

Jjava myPackagel.myPackage2.filel

Classpath :

It is a environmental variable, which contains the path for the default-working
directory (.).

The specific location that java compiler will consider, as the root of any
package hierarchy is, controlled by Classpath

Access Specifiers

« private: accessible only in the class

« nomodifier: S0-called “package” access — accessible only in the same
package

« protected: accessible (inherited) by subclasses, and accessible by code in
same package

« public: accessible anywhere the class is accessible, and inherited by
subclasses

Notice that private protected is not syntactically legal.

Access By private package protected public

the class itself ves ves ves ves
a subdass in same package ne ¥es ves ves
non-subclass in same package no ves yes yes
a subclass in other package no no ves ves
non-subclass in other package no no no ves

11.Define Interface & implement it, give
example?

Ans: An interface is a reference type in Java. It is similar to class. It is a
collection of abstract methods. A class implements an interface, thereby
inheriting the abstract methods of the interface.

Along with abstract methods, an interface may also contain constants,
default methods, static methods, and nested types. Method bodies exist
only for default methods and static methods.

Writing an interface is similar to writing a class. But a class describes the
attributes and behaviors of an object. And an interface contains behaviors
that a class implements.

Unless the class that implements the interface is abstract, all the methods
of the interface need to be defined in the class.

An interface is similar to a class in the following ways —
» An interface can contain any number of methods.

+ An interface is written in a file with a .java extension, with the name of the
interface matching the name of the file.

¢ The byte code of an interface appears in a .class file.

» Interfaces appear in packages, and their corresponding bytecode file must be
in a directory structure that matches the package name.

However, an interface is different from a class in several ways, including

* ‘You cannot instantiate an interface.

+ An interface does not contain any constructors.
+ All of the methods in an interface are abstract.

» An interface cannot contain instance fields. The only fields that can appear in
an interface must be declared both static and final.

+ An interface is not extended by a class; it is implemented by a class.

+ An interface can extend multiple interfaces.

Declaring Interfaces

The interface keyword is used to declare an interface. Here is a simple
example to declare an interface -

Example
Following is an example of an interface —

/* File name : NameOfInterface.java */
import java.lang.*;

f// Any number of import statements

public interface NameOfInterface {
// Any number of final, static fields
// Any number of abstract method declarations)

I

Interfaces have the following properties —

» Aninterface is implicitly abstract. You do not need to use the abstractkeyword
while declaring an interface.

s Each method in an interface is also implicitly abstract, so the abstract keyword
is not needed.

» Methods in an interface are implicitly public.

Example
/* File name : Animal.java */
interface Animal {

public void eat();

public veid travel();
}

Implementing Interfaces

When a class implements an interface, you can think of the class as signing
a contract, agreeing to perform the specific behaviors of the interface. If
a class does not perform all the behaviors of the interface, the class must
declare itself as abstract.

A class uses the implements keyword to implement an interface. The
implements keyword appears in the class declaration following the extends
portion of the declaration.

Example
/* File name : MammalInt.java */

public class MammalInt implements Animal {

public woid eat() {

System.out.println{ “Mammal eats”);

public void travel() {
System.out.println("Mammal travels");

public int noOflLegs() {

return @;

public static void main(String args[]) {
MammalInt m = new MammallInt();
m.eat();

m.travel();

}

This will produce the following result —

Qutput

Mammal eats
Mammal travels

When overriding methods defined in interfaces, there are several rules to
be followed —

» Checked exceptions should not be declared on implementation methods other
than the ones declared by the interface method or subclasses of those declared
by the interface method.

+ The signature of the interface method and the same return type or subtype
should be maintained when overriding the methods.

+ An implementation class itself can be abstract and if so, interface methods
need not be implemented.

When implementation interfaces, there are several rules =
A class can implement more than one interface at a time.
» A class can extend only one class, but implement many interfaces.

#« An interface can extend another interface, in a similar way as a class can
extend another class.

Extending Interfaces

An interface can extend another interface in the same way that a class can
extend another class. The extends keyword is used to extend an
interface, and the child interface inherits the methods of the parent
interface.

The following Sports interface is extended by Hockey and Football
interfaces.

Example
// Filename: Sports.java
public interface Sports {
public void setHomeTeam(String name);

public void setVisitingTeam(String name);

// Filename: Football.java

public interface Football extends Sports {
public void homeTeamScored(int points);
public void wvisitingTeamScored(int points);

public void end0fQuarter(int quarter);

// Filename: Hockey.java

public interface Hockey extends Sports {
public void homeGoalScored();
public void visitingGoalScored();
public void endOfPeriod(int period);
public void overtimePeriod(int ot);

}

The Hockey interface has four methods, but it inherits two from Sports;
thus, a class that implements Hockey needs to implement all six methods.

Similarly, a class that implements Football needs to define the three
methods from Football and the two methods from Sports.

Extending Multiple Interfaces

A Java class can only extend one parent class. Multiple inheritance is not
allowed. Interfaces are not classes, however, and an interface can extend
more than one parent interface.

The extends keyword is used once, and the parent interfaces are declared
in @ comma-separated list.

For example, if the Hockey interface extended both Sports and Event, it
would be declared as -

Example
public interface Hockey extends Sports, Event

Tagging Interfaces

The most common use of extending interfaces occurs when the parent
interface does not contain any methods. For example, the Mouselistener

interface in the java.awt.event package extended java.util.EventListener,
which is defined as -

Example

package java.util;
public interface EventListener

{1

An interface with no methods in it is referred to as a tagging interface.
There are two basic design purposes of tagging interfaces -

Creates a common parent — As with the EventListener interface, which
is extended by dozens of other interfaces in the Java API, you can use a
tagging interface to create a common parent among a group of interfaces.
For example, when an interface extends EventListener, the JVM knows that
this particular interface is going to be used in an event delegation scenario.

Adds a data type to a class — This situation is where the term, tagging
comes from. A class that implements a tagging interface does not need to
define any methods (since the interface does not have any), but the class
becomes an interface type through polymorphism.

12. How interface Is different from abstract
class?

Ans:

The main difference between abstract class and interface is driven by abstract
methods. An abstract class may or may not have abstract methods, while all methods
declared inside an interface must be abstract (an abstract method is a method that is
declared without an implementation -- without braces, and followed by a semicolon).
Abstract classes and interfaces have their own application uses, and cannot be used

interchangeably. Here, a tabular comparison is presented between abstract classes and
interfaces.

Table 1: Differences between abstract class and interface in Java

Abstract Class Interface

An abstract class is a class that is declared ab=stract.

An interface in Java is
It may or may not have abstract methods) .

implicitly abstract and

An abstract class can have both abstract and non-
abstract methods. Non-abstract methods in an
abstract class are used to implement default behavior.

Non-abstract methods of an abstract class can be
declared static because to call a non-abstract static
method there 1s no need to create an instance of the
class. Of course, a method cannot be
declared abstract and statiec both in abstract class.

An abstract class can declare instance variables as well
along with constants.

Abstract classes have constructors, and those
constructors are always called when a concrete
subclass is instantiated.

adding that modifier is
considered redundant and
makes no difference.

Methods declared in an
interface are by default
abstract and public;
therefore, they cannot have
implementation. It means to
say that an interface cannot
contain non-abstract
methods.

On the other hand, interface
methods must not be static
because all the methods of an
interface are implicitly
abstract, and an abstract

method c¢an never be
declared static.

All variables defined in an
interface must
bepubl:i.r:,static,

and final - in other words,
interfaces can declare only

constants, not instance
variables.

Interfaces do not have
constructors. Interfaces are
not part of an object's
inheritance tree.

Members of an abstract class can All members of an interface

be public, private Or protected depending upon the
required visibility level

are by default public.

An abstract class is extended using keyword extends. An interface is implemented

using keyword implements.

An abstract class can extend another class and An interface can extend one

implement one or more interfaces.

or more other interfaces. An
interface cannot extend
anything but another
interface.

When to Use Abstract Class Instead of Interface

When to use abstract elass: In some situations, the superclass does not directly
relate to a "thing” in the real world, and because of this we do not instantiate the
superclass. For example, all four and two-wheelers are vehicles but there is no real
world object as "vehicle" it is a conceptual entity, which has no real world existence. In
that case we can declare an abstract class called "Vehicle" and place all common
attributes and functionalities inside that class. Later we can create a subelass "Car”
which inherits all common attributes and methods from "Vehicle". Now an object of
class "Car" can be created and it can be assigned to the reference of "Vehicle".

In above explained situation we should use abstract elass rather than interface because
this subclass-superclass relationship is genuinely an "is a" relationship.

When to use interface: On the other hand we interfaces should be used when a
class promises some behaviors to provide. Interfaces form a contract between the class
and the outside world. Moreover, iterface should be used when the subclass needs to
inherit from another class.

Abstract class vs Interface (Different)

Abstract class

+ Todeclare an abstract class,

use abstract keyword.
public abstract class B{
}

* Aclass can extend only one

Interface

* Todeclare an interface, use

abstract keyword.
public interface B{
]

A class can implement more

abstract class, than one interface,
class A extends B{ class A implements C, D, E{
} }
+ In relationship, we say * In rdatlunshlp we
AisB.

W

13. What is generic? Explain generic classes &
generic methods?

Ans:

Java Generic methods and generic classes enable programmers to
specify, with a single method declaration, a set of related methods, or with
a single class declaration, a set of related types, respectively.

Generics also provide compile-time type safety that allows programmers
to catch invalid types at compile time.

Using Java Generic concept, we might write a generic method for sorting
an array of objects, then invoke the generic method with Integer arrays,
Double arrays, String arrays and so on, to sort the array elements.

Generic Methods

You can write a single generic method declaration that can be called with
arguments of different types. Based on the types of the arguments passed
to the generic method, the compiler handles each method call
appropriately. Following are the rules to define Generic Methods -

s All generic method declarations have a type parameter section delimited by
angle brackets (< and >) that precedes the method's return type (< E > in
the next example).

» FEach type parameter section contains one or more type parameters separated
by commas. A type parameter, also known as a type variable, is an identifier
that specifies a generic type name.

s« The type parameters can be used to declare the return type and act as
placeholders for the types of the arguments passed to the generic method,
which are known as actual type arguments.

+ A generic method's body is declared like that of any other method. Note that
type parameters can represent only reference types, not primitive types (like
int, double and char).

Example

Following example illustrates how we can print an array of different type
using a single Generic method —

public class GenericMethodTest {
// generic method printArray
public static < E > void printArray(E[] inputArray) {
// Display array elements
for(E element : inputarray) {

(]

System.out.printf("¥s “, element);

System.out.println();

public static void main(String args[]) {
// Create arrays of Integer, Double and Character
Integer[] intArray = { 1, 2, 3, 4, 5 };
Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };
Character[] charArray = { 'H', "E", "L", "L', '0" };

System.out.println("Array integerArray contains:");

printArray(intArray); // pass an Integer array

System.out.println("“\nArray doubleArray contains:");

printArray(doubleArray); // pass a Double array

System.out.println{“\nArray characterArray contains:");

printArray(charArray); // pass a Character array

}

This will produce the following result —
Output

Array integeraArray contains:
12345

Array doubleArray contains:
1.1 2.2 3.3 4.4

Array characterArray contains:
HELLO

Bounded Type Parameters

There may be times when you'll want to restrict the kinds of types that are

allowed to be passed to a type parameter. For example, a method that
operates on numbers might only want to accept instances of Number or

its subclasses. This is what bounded type parameters are for.

To declare a bounded type parameter, list the type parameter's name,
followed by the extends keyword, followed by its upper bound.

Example

Following example illustrates how extends is used in a general sense to
mean either "extends" (as in classes) or "implements” (as in interfaces).
This example is Generic method to return the largest of three Comparable

objects -

public class MaximumTest {
/{ determines the largest of three Comparable objects

public static <T extends Comparable<T:> T maximum(T x, Ty, T z) {
T max = x; /f assume x is initially the largest

if(y.compareTo(max) > @) {
max = y; f/ y is the largest so far

if(z.compareTo(max) > @) {
max = z; [/ z is the largest now
}

return max // returns the largest object

public static void main(String args[]) {
System.out.printf(“Max of %d, %¥d and %d is %d\n\n",
3, 4, 5, maximum(3, 4, 5 });

System.out.printf("Max of %.1f,%.1f and %.1f is %.1f\n\n",
6.6, 8.8, 7.7, maximum{ 6.6, 2.8, 7.7));

System.out.printf(“Max of %s, %s and %s is ®s\n",“pear”,

“apple”, “"orange", maximum(“pear"”, "apple", "orange"));

}
This will produce the following result —
Output

Max of 3, 4 and 5 is5 5
Max of 6.6,8.8 and 7.7 is 8.8

Max of pear, apple and orange is pear

Generic Classes

A generic class declaration looks like a non-generic class declaration,
except that the class name is followed by a type parameter section.

As with generic methods, the type parameter section of a generic class
can have one or more type parameters separated by commas. These

classes are known as parameterized classes or parameterized types
because they accept one or more parameters.

Example
Following example illustrates how we can define a generic class —

public class Box<T> {
private T t;
public void add(T t) {
this.t = t;

public T get() {
return t;

}
public static void main(String[] args) {

Box<Integer> integerBox = new Box<Integer>();

Box<String> stringBox = new Box<String:>();

integerBox.add{new Integer({1@));
stringBox.add(new String("Hello World"));

System.out.printf("Integer Value :X%d\n\n", integerBox.get());
System.out.printf("String Value :¥s\n", stringBox.get());

}

This will produce the following result —

Qutput

Integer Value :18
String Value :Hello World

14. Explain the Exception handling? Explain
different type of exception handling?

Ans:

What is an exception?

An Exception can be anything which interrupts the normal flow of the program.
When an exception occurs program processing gets terminated and doesn't
continue further. In such cases we get a system generated error message.
The good thing about exceptions is that they can be handled. We will cover
the handling part later in this same tutorial.

When an exception can occur?
Exception can occur at runtime (known as runtime exceptions) as well as at
compile-time (known Compile-time exceptions).

Reasons for Exceptions

There can be several reasons for an exception. For example, following
situations can cause an exception — Opening a non-existing file, Network
connection problem, Operands being manipulated are out of prescribed
ranges, class file missing which was supposed to be loaded and so on.

Difference between error and exception

Errors indicate serious problems and abnormal conditions that most
applications should not try to handle. Error defines problems that are not
expected to be caught under normal circumstances by our program. For
example memory error, hardware error, JVM error etc.

Exceptions are conditions within the code. A developer can handle such
conditions and take necessary corrective actions. Few examples —

DivideByZero exception
NullPointerException
ArithmeticException
ArraylndexOutOfBoundsException

Advantages of Exception Handling

« Exception handling allows us to control the normal flow of the program by
using exception handling in program.

« Itthrows an exception whenever a calling method encounters an error
providing that the calling method takes care of that error.

« It also gives us the scope of organizing and differentiating between
different error types using a separate block of codes. This is done with
the help of try-catch blocks.

Why to handle exception?

If an exception is raised, which has not been handled by programmer then
program execution can get terminated and system prints a non user friendly
error message.

Ex:-Take a look at the below system generated exception

An exception generated by the system is given below

Exception in thread "main" java.lang.ArithmeticException: / by zero at
ExceptionDemo.main(ExceptionDemo.java:5)

ExceptionDemo : The class name

main : The method name

ExceptionDemo.java : The filename

java:5 : Line number

For a novice user the above message won't be easy to understand. In order to
let them know that what went wrong we use exception handling in java
program. We handle such conditions and then prints a user friendly warning
message to user, which lets them correct the error as most of the time
exception occurs due to bad data provided by user.

Types of exceptions

There are two types of exceptions

1)Checked exceptions
2)Unchecked exceptions

Below is a brief about each however if you want a detailed tutorial with
examples then you can refer Checked and Unchecked exceptions in Java.

Checked exceptions

All exceptions other than Runtime Exceptions are known as Checked
exceptions as the compiler checks them during compilation to see whether the
programmer has handled them or not. If these exceptions are not
handled/declared in the program, it will give compilation error.

Examples of Checked Exceptions :-

ClassNotFoundException
llegalAccessExceplion
NoSuchFieldExceplion

EOFException etC.

Unchecked Exceptions

Runtime Exceptions are also known as Unchecked Exceptions as the
compiler do not check whether the programmer has handled them or not but
it's the duty of the programmer to handle these exceptions and provide a safe
exit.

These exceptions need not be included in any method's throws list because
compiler does not check to see if a method handles or throws these
exceptions.

Examples of Unchecked Exceptions:-
ArithmeticException
ArraylndexOutOfBoundsExceplion
MNullPointerException

NegativeArraySizeException efc.

Exception hierarchy

. ‘

| Excapton | Errar

a5 NotFoundEx conion IntermuobedE scept on |l l e |
lliegalacoes sExzeption | RuntmeExcepton |

llluﬂmwm-lw | h N#nnihunn d

T st s PP i o A o 5 8 .
1l g allBary L el ooep tion |
l‘ l ma e FF o 3 e enton |

l Aty It OB urdsl mottion |

= tringl nd @ ol eOFRousndsFx e ptio n I

Exception handling in Java

1. Try-catch in Java

The try block contains a block of program statements within which an
exception might occur. A try block is always followed by a catch block, which
handles the exception that occurs in associated try block. A try block must
followed by a Catch block or Finally block or both.

Syntax of try block

try{

ffstatements that may cause an exception
}
What is Catch Block?

A catch block must be associated with a try block. The corresponding catch
block executes if an exception of a particular type occurs within the try block.
For example if an arithmetic exception occurs in try block then the statements
enclosed in catch block for arithmetic exception executes.

Syntax of try catch in java

try
{/statements that may cause an exception
}
catch (exception(type) e(object))
{

//error handling code

}
Flow of try catch block

1. If an exception occurs in try block then the control of execution is passed
to the catch block from try block. The exception is caught up by the
corresponding catch block. A single try block can have multiple catch
statements associated with it, but each catch block can be defined for
only one exception class. The program can also contain nested try-catch-
finally blocks.

2. After the execution of all the try blocks, the code inside the finally block
executes. It is not mandatory to include a finally block at all, but if you do,
it will run regardless of whether an exception was thrown and handled by
the try and catch blocks.

An example of Try catch in Java

class Examplel {

public static vold main(String args[]) {
int numl, num2;
try {

ff Try block to handle code that may cause exception
numl = 8;
num2 = 62 / numl;
System.out.println({"Try block message");
} catch (ArithmeticException e) {
{// This block is to catch divide-by-zero error
System.out.println{"Error: Don't divide a number by zero"};

}
System,out.println("I'm out of try-catch block in Java.");

}
}

Output:

Error: Don't divide a number by zero
I'm out of try-catch block in Java.

Multiple catch blocks in Java

1. A try block can have any number of catch blocks.

2. A catch block that is written for catching the class Exception can catch all
other exceptions

Syntax:

catch(Exception e){
f/This catch block catches all the exceptions

}

3. If multiple catch blocks are present in a program then the above mentioned
catch block should be placed at the last as per the exception handling best
practices.

4. If the try block is not throwing any exception, the catch block will be
completely ignored and the program continues.

5. If the try block throws an exception, the appropriate catch block (if one
exists) will catch it

—catch(ArithmeticException e) is a catch block that can catch
ArithmeticException

—catch(NullPointerException e) is a catch block that can catch
NullPointerException

6. All the statements in the catch block will be executed and then the program
continues.

Example of Multiple catch blocks

class Example2(
public static vold main(String args[]){
try{
int a[]=new int[7];
al4]=38/0;
System.out.println("First print statement in try block");

catch{ArithmeticException e){
System.out.println{"Warning: ArithmeticException”);

catch{ArrayIndexOutOfBoundsException e){
System.out.println({"Warning: ArrayIndexOutOfBoundsException");
}

catch(Exception e){
System.out.println{"Warning: Some Other exception”);
}

System.out.println{"Out of try-catch block...");

}
}

OQutput:

Warning: ArithmeticException
Out of try-catch block...

In the above example there are multiple catch blocks and these catch blocks
executes seguentially when an exception occurs in try block. Which means if
you put the last catch block (catch(Exception e)) at the first place, just after try
block then in case of any exception this block will execute as it has the ability
to handle all exceptions. This catch block should be placed at the last to avoid
such situations.

2.Nested Try Catch:

3. The try catch blocks can be nested. One try-catch block can be present
in the another try's body. This is called Nesting of try catch blocks.
Each time a try block does not have a catch handler for a particular
exception, the stack is unwound and the next try block's catch (i.e.,
parent try block's catch) handlers are inspected for a match.

4. If no catch block matches, then the java run-time system will handle the
exception. Lets see the syntax first then we will discuss this with an
example.

5.Syntax of Nested try Catch

—

¥« SMain try block
8. try

9. {

le. statement 1;
11. statement 2;

12. fltry-catch block inside another try block
13 try

14. i

15. statement 3;

16. statement 4;

17. }

18. catch(Exception el)
19. {

208. /[Exception Message

21.

22. ;Htry-katqh block inside another try block
23. try

24. {

250 statement 5;

26. statement 6;

27.

28. catch(Exception e2)

9. {

3e. //Exception Message

31. }

32.}

33. catch(Exception e3) //Catch of Main(parent) try block
34.{

35. //Exception Message

36.}

SV s

38. Nested try catch example - explanation

39. class Nest{
48. public static void main(String args[]){

41. //Parent try block

42. try{

43. //Child try blockl

a4, try{

45, System.out.println{"Inside blockl");

45. int b =45/8;

47. System.out.printlnib);

48. }

49, catch({ArithmeticException el){

5. System.out.println{“Exception: &1");

51.

52. /fChild try block2

53. try{

54. System.out.println(“Inside block2");

55. int b =45/8;

56. System.out.println(b);

57. }

58. catch(ArrayIndexOutOfBoundsException e2)}{

59. System.out.println{“Exception: e2");

68. 1

61. { System.out.println{"Just other statement™);

62.

63. catch{arithmeticException e3){

64. System,out.println{"Arithmetic Exception"};

65. System.out.println{"Inside parent try catch block"};
66. }

67. catch{ ArrayIndexOutOfBoundsException ed}{

68. System.out .println{ "ArrayIndexQutOfBoundsException™);
69. System.out.println{"Inside parent try catch block"};
7a. }

71. catch(Exception e5){

72. System.out.println{"Exception”});

73. System.out.println("Inside parent try catch block");
74. }

75. System.out.println{“Next statement..");

76. }

77.}
78. Output:

79. Inside blockl

8@. Exception: el

81. Inside block2

B2.Arithmetic Exception
83.Inside parent try catch block
84.Next statement..

85. The above example shows Nested try catch use in Java. You can
see that there are two try-catch block inside main try block’s body. I've
marked them as bleck 1 and block 2 in above example.

Block1: | have divided an integer by zero and it caused an arithmetic
exception however the catch of block1 is handling arithmetic exception
SO "Exception: e1"got printed.

86. Block2: In block2 also, ArithmeticException occurred but block 2
catch is only handling ArraylndexOutOfBoundsException so in this case
control jump back to Main try-catch(parent) body. Since catch of parent
try block is handling this exception that's why “Inside parent try catch
block™ got printed as output.

87. Parent try Catch block: Since all the exception handled properly
so program control didn't get terminated at any point and at last “Next
statement..” came as output.

88. Note: The main point to note here is that whenever the child try-
catch blocks are not handling any exception, the control comes back to
the parent try-catch if the exception is not handled there also then the
program will terminate abruptly.

89. Consider this example:
Here we have deep (two level) nesting which means we have a try-
catch block inside a child try block. To make you understand better |
have given the names to each try block in comments like try-block2 etc.

90. This is how the structure is: try-block3 is inside try-block2 and try-
block2 is inside main try-block, you can say that the main try-block is a
grand parent of the try-block3. Refer the explanation which is given at
the end of this code.

91.class NestingDemo{
92. public static void main(String args[])}{

93. {/main try-block
94. try{
95. //try-block2

96. try{

a97. /ftry-block3

98, try{

99, int arr[]= {1,2,3,4};

188. f* I'm trying to display the value of
181. * an element which doesn't exist. The
182. * code should throw an exception

183. /

1e4. System.out.println(arr[10]);

1es. }eatch{ArithmeticException e){

1e6. System.out.print("Arithmetic Exception"};
187v. System.out.println(" handled in try-block3");
188.]

189.

118. catch{ArithmeticException e){

111. System.out.print("Arithmetic Exception");

112. System.out.println{" handled in try-block2"};
113. }

114.

115. catch(ArithmeticException e3){

116. System.out.print(“Arithmetic Exception™);

117, System,out.println(” handled in main try-block");
118. }

119. catch(ArrayIndexOutOfBoundsException ed){

126. System.out.print("ArrayIndexOutOfBoundsException”);
121. System.out.println{" handled in main try-block");
1232, }

123, catch(Exception e5){

124. System.out.print("Exception™)};

125. System.out.println(” handled in main try-block");
126. 1

127. '}

128. }

129. ArrayIndexOutOfBoundsException handled in main try-block

As you can see that the ArrayindexOutOfBoundsException has occurred in the
grand child try-block3. Since try-block3 is not handling this exception, the
control then gets transferred to the parent try-block2 and looked for the
catch handlers in try-block2. Since the try-block2 is also not handling that
exception, the control got transferred to the main grand parent try-block
where it found the appropriate catch block for exception. This is how

the routing of exception is done in nested structure.

3. Checked and unchecked exceptions:

There are two types of exceptions: checked exceptions and unchecked
exceptions. In this tutorial we will learn both of them with the help of
examples. The main difference between checked and unchecked
exception is that the checked exceptions are checked at compile-time
while unchecked exceptions are checked at runtime.

4,

5.

6.

7.

8.

9.

1e.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

28.

9.
3e.
31.

32.

What are checked exceptions?

Checked exceptions are checked at compile-time. It means if a method
is throwing a checked exception then it should handle the exception
using try-catch block or it should declare the exception using throws
keyword, otherwise the program will give a compilation error. It is
named as checked exception because these exceptions

are checked at Compile time.

Lets understand this with this example: In this example we are reading
the file myiile.ta and displaying its content on the screen. In this program
there are three places where an checked exception is thrown as
mentioned in the comments below. FilelnputStream which is used for
specifying the file path and name, throws FileNotFoundException. The read()
method which reads the file content throws 10Exception and the close()
method which closes the file input stream also throws I0Exception.

import java.io.*;
class Example {
public static void main(String args[])

{

FileInputStream fis = null;

{*This constructor FileInputStream{File filename)
* throws FileNotFoundException which is a checked
* exception*/

fis = new FilelnputStream(™B:/myfile.txt™);
int k;

f*Method read() of FileInputStream class also throws
* 3 checked exception: IOException®/

while((k = fis.read{)) '= -1)

{

}

'*The method (,].'ZJ‘J:_'I:'I closes the file input strean
* It throws IOException®,
fis.close();

}

System.out.print({(char)k);

Output:

Exception im thread "main" java.lang.Error: Unresolved compilation
problems:
Unhandled exception type FileNotFoundException
Unhandled exception type IOException
Unhandled exception type IOException

Why this compilation error? As | mentioned in the beginning
that checked exceptions gets checked during compile time. Since we
didn't handled/declared the exceptions, our program gave the
compilation error.

How to resolve the error? There are two ways to avoid this error. We
will see both the ways one by one.

Method 1: Declare the exception using throws keyword.

As we know that all three occurrences of checked exceptions are inside
main() method so one way to avoid the compilation error is: Declare the
exception in the method using throws keyword. You may be thinking
that our code is throwing FileNotFoundException and IOException both
then why we are declaring the IOException alone. Th reason is that
IOException is a parent class of FileNotFoundException so it by default
covers that. If you want you can declare that too like this public static void
main({String args([l) throws I0Exceplion, FileNotFoundException.

33, import java.io.*;

34.class Example {

35. public static void main{String args[]) throws IOException
36. {

37. FileInputStream fis = null;

38. fis = new FileInputStream("B:/myfile.txt");
39, int k;

a8 .

41, while((k = fis.read()) != -1)

42, {

43, system.out.print({char)k);

44, 1

45, fis.close();

46. }

47.}

File content is displayed on the screen.

55.

57.
58.
59.

Method 2: Handle them using try-catch blocks.

The above approach is not good at all. It is not a best exception
handling practice. You should give meaningful message for each
exception type so that it would be easy for someone to understand the
error. The code should be like this:

. import java.io.*;
45,
58.
51.
52.
53.

class Example {

public static void main(String args[])

{
FileInputStream fis = null;
try{

fis = new FileInputStream{"B:/myfile.txt");
Ycatch{FileNotFoundException fnfe){
System.out.println{“The specified file is not " +
“present at the given path");

int k;
try{

61. while({ k = fis.read()) != -1)
62. {
63. System.out.print(({char)k);

65. fis.close();

66. }catch(IDException ioe){

67. System.out.println{"1/0 error occurred: "+ioe);
68. }

69. }

70.}

1.Finally block in Java:

1. A finally statement must be associated with a try statement. It identifies a
block of statements that needs to be executed regardless of whether or not
an exception occurs within the try block.

2. After all other try-catch processing is complete, the code inside the finally
block executes. It is not mandatory to include a finally block at all, but if you
do, it will run regardless of whether an exception was thrown and handled by
the try and catch parts of the block.

3. In normal execution the finally block is executed after try block. When any
exception occurs first the catch block is executed and then finally block is
executed.

4. An exception in the finally block, exactly behaves like any other exception.

5. The code present in the finally block executes even if the try or catch block
contains control transter statements like return, break or continue.

To understand above concepts better refer the below examples.

Syntax of Finally block

try
{

ffatatements that may cause an exceptior

}
finally
{
f/statements to be executed

}

Cases when the finally block doesn’t execute

The circumstances that prevent execution of the code in a finally block are:
— The death of a Thread

— Using of the System. exit() method.

— Due to an exception arising in the finally block.

Finally block and Return statement

Finally block executes even if there is a return statement in try-catch block.
PFB the example -

class JavaFinally

public static void main(String args[])

{
System.out.println{JavaFinally.myMethod());

}
public static int myMethod()

{
try {
return 112;

}
finally {

System.out.println({"This is Finally block");
System.out.println{“Finally block ran even after return statement");

}
}

}
Output of above program:

This is Finmally block
Finally block ran even after return statement
112

Finally and Close()

Close() is generally used to close all the open streams in one go. Its a good
practice to use close() inside finally block. Since finally block executes even if
exception occurs so you can be sure that all input and output streams are
closed properly regardless of whether the exception occurs or not.

E.g.

try{
OutputStream osf = new FileQutputStream(“filename®);
OutputStream osb = new BufferedOutputStream{opf);
ObjectOutput op = new ObjectOutputStream(osb);
try{
output.writeObject(writableObject);
}

finally{
op.close();

}
catch(I0Exception el){

System.out.println{el);
}

i-"i'naﬂy block without catch

A try-finally block is possible without catch block. Which means a try block can
be used with finally without having a catch block.

InputStream input = null;

try {
input = new FilelnputStream{“"inputfile.txt");

}
finally {
if (input != null) {
try {
in.close();
}catch (IOException exp) {
System.out.println{exp);
}
}
}

Finally block and System. exit()

System.exit() statement behaves differently than return statement. Unlike

return statement whenever System.exit() gets called in try block then Finally
block doesn't get executed. Refer the below example to understand it better —

try {
f/try block
System.out.println{"Inside try block"};
System,exit(@)

}
catch (Exception exp) {
System.out.println{exp);

}
finally {
System.out.println({"Java finally block");

}

In the above example if the System.exit(0) gets called without any exception
then finally won't execute. However if any exception occurs while
calling System.exit(0) then finally block will be executed.

Handling try-catch-finally block

« Either a try statement should be associated with a catch block or with
finally.

« Since catch performs exception handling and finally performs the
cleanup, the best approach is to merge both of them.

Syntax:

try
{

//statements that may cause an exception
catch (..)
fferror handling code

}
finally
{

f/statements To be executed
}
Examples of Try catch finally blocks

Example 1: Below example illustrates finally block when no exception occurs
in try block

class Examplel{
public static void main(String args[])}{

try{
System.out.println{“First statement of try block");
int num=45/3;
System,out.println{num);

}
catch{ ArrayIndexOutOfBoundsException e){

System,out.println("ArrayIndexOutOfBoundsException"};

}
finally{

System.out.println{"finally block");
}

System,out.println(”Out of try-catch-finally block");

}
}
Output:

finally block
Out of try-catch-finally block

Example 2:Below example illustrates finally block execution when exception
occurs in try block but doesn't get handled in catch block.

class Example2{
public static veoid main(String args[] M
try{

System.out.println{"First statement of try block");
int num=45/8;
System.out,println{num);

}

catch(ArrayIndexOutOfBoundsException e){
System.out.println("ArrayIndexOutCOfBoundsException”);
}

finally{
System.out.println{"finally block");
}

System.out.println(“COut of try-catch-finally block");
}

}
Output:

First statement of try block

finally block

Exception in thread "main" java.lang.ArithmeticException: / by zero
at beginnersbook.com.Example2.main(Details,java:6)

Example 3:Below example illustrates execution of finally, when exception
occurs in try block and handled in catch block.

class Example3{
public static void main(String args[]){

try{
System.out.println("First statement of try block");
int num=45/8;
System.out.println{num);

catch{ArithmeticException e){
System.out.println(“ArithmeticException™);

}
finally{
System.out.println("finally block");

}
system.out.println(“0Out of try-catch-finally block™);

&
}
Output:

First statement of try block
ArithmeticException

finally block

Out of try-catch-finally block

5. try-catch-finally

Flow of control in try/catch blocks:

when exception doesn’t occur:
When the code which is present in try block’s body doesn't throw any

exceptionthen first, the body of try block executes and then the code after
catch blocks. In this case catch block never runs as they are meant to be run
when an exception occurs. For example-

int x = 18;
int y = 18;

try{

int num= x/y;

System.out.println(“next-statement: Inside try block");
}catch(Exception ex)

System.out.println("Exception”);

}
System.out.println("next-statement: Outside of try-catch®};

Output:

next-statement: Inside try block
next-statement: Outside of try-catch

In the above example exception didn't occur in try block so catch block didn't
run.

when exception occurs:
First have a look at the below example and then we will discuss it —

int x = 8;
int vy = 18;
try{
int num= y/x;
System.out.println({"next-statement: Inside try block");
}catch{ Exception ex)

System,.out.println{“Exception Occurred");
1

System.out.println("next-statement: Outside of try-catch®);
Output:

Exception Occurred
next-statement: Outside of try-catch

Point to note in above example: There are two statements present inside try
block. Since exception occurred because of first statement, the second
statement didn't execute. Hence we can conclude that if an exception occurs
then the rest of the try block doesn’t execute and control passes to catch
block.

Flow of control in try/catch/finally blocks:

1. If exception occurs in try block's body then control immediately
transferred(skipping rest of the statements in try block) to the catch
block. Once catch block finished execution then finally block and after
that rest of the program.

2. If there is no exception occurred in the code which is present in try block
then first, the try block gets executed completely and then control gets
transferred to finally block (skipping catch blocks).

3. Ifareturn statement is encountered either in try or catch block. In such
case also finally runs. Control first goes to finally and then it returned
back to return statement.

Consider the below example to understand above mentioned points:

class TestExceptions {
static void myMethod(int testnum) throws Exception {
System.out.println ("start - myMethod");
if (testnum == 12)
throw new Exception();
System.out.println(“end - myMethod");
return;
}
public static void main(String args[]) {
int testnum = 12;
try {
System.out.println(“try - first statement");
myMethod(testnum);
System.out.println{"try - last statement");
}
catch (Exception ex) {
System.out.println("“An Exception®);
}

finally {
System. out. println("finally") ;
}

System.out.println{*0Out of try/catch/finally - statement");
}

}
Output:

try - first statement
start - myMethod
An Exception

finally
Out of try/catch/finally - statement

6. Throw exception in Java:

Do you know that a programmer can create a new exception and throw it
explicitly? These exceptions are known as user-defined exceptions. In order

to throw user defined exceptions, throw keyword is being used. In this tutorial,

we will see how to create a new exception and throw it in a program
using throw keyword.

You can also throw an already defined
exception like ArithmeticException, IOException efc.

Syntax of throw statement

throw AnyThrowableInstance;

Example:

S/ void method

public void sample()

{

ffStatements
fif (somethingWrong) ther
I0Exception e = new IOException();

throw &;

}

//More S5tatements

Note:

A call to the above mentioned sample method should be always placed
in a try block as it is throwing a checked exception — IOException. This is
how it the call to above method should be done:

MyClass obj = new MyClass();

try{

obj.sample();
leatch(IOException ioe)
{

ffYour errar Message nere
System.out.println{ioe);
}

Exceptions in java are compulsorily of type Throwable. If you attempt to
throw an object that is not throwable, the compiler refuses to compile
your program and it would show a compilation error.

Flow of execution while throwing an exception using throw keyword

Whenever a throw statement is encountered in a program the next statement
doesn't execute. Control immediately transferred to catch block to see if the
thrown exception is handled there. If the exception is not handled there then
next catch block is being checked for exception and so on. If none of the catch
block is handling the thrown exception then a system generated exception
message is being populated on screen, same what we get for un-

handled exceptions.
E.g.

class ThrowDemo{
public static veoid main(string args[]M

try{
char array[] = {'a','b",'g","'1'};
/*I'm displaying the value which does not
* exist s0 this should throw an exception

*

system.out.println({array[78]);
}catch(ArithmeticException e){
System.out.println{"Arithmetic Exception!!"};

}
}

}
Output:

Exception im thread "main" java.lang.ArrayIndexOutOfBoundsException:
78 at beginnersbook.com.ThrowDemo.main(Details.java:9)

Since the exception thrown was not handled in the catch blocks the system
generated exception message got displayed for that particular exception.

Few examples of throw exception in Java

Example 1: How to throw your own exception explicitly using throw
keyword

package beginnersbook.com;
class MyOwnException extends Exception {
public MyOwnException(String msg){
super(msg);

}

class EmployeeTest {
static void employeeAge(int age) throws MyOwnException{
if(age < 8)
throw new MyOwnException{"Age can't be less than zero");
else
System.out.println(”Input is wvalid!!");

public static void main(String[] args) {
try {
: employeeAge(-2);

catch (MyOwnException e) {
e.printStackTrace();
1

) }
Output:

beginnersbock.com.MyOwnException: Age can't be less than zero
Points to Note: Method call should be in try block as it is throwing an
exception.

Example2: How to throw an already defined exception using throw
keyword

package beginnersbook.com;
class Exception2{
static int sum(int numl, int num2){
if (numl == @)
throw new ArithmeticException(“First parameter is not valid");
else
System.out.println("Both parameters are correct!!");
return numl+num2;

}
public static void main(String args[]){

int res=sum(@,12);
System.out.println{res);
System.out.println{"Continue Next statements");

}
}
Output:

Exception im thread main java.lang.ArithmeticException: First parameter is not

7. Throws in Java:

Use of throws keyword in Java

1. The throws keyword is used in method declaration, in order to explicitly
specify the exceptions that a particular method might throw. When a method
declaration has one or more exceptions defined using throws clause then the
method-call must handle all the defined exceptions.

2. When defining a method you must include a throws clause to declare those
exceptions that might be thrown but doesn't get caught in the method.

3. If a method is using throws clause along with few exceptions then this
implicitly tells other methods that - " If you call me, you must handle these
exceptions that | throw".

Syntax of Throws in java:

void MethodName() throws ExceptionName{
Statementl

E.g:

public void sample() throws IOException{
{/5tatements
//if (somethingWrong)
I0Exception e = new IOException();
throw e;
//More Statements

}
Note: In case a method throws more than one exception, all of them should

be listed in throws clause. PFB the example to understand the same.

public void sample() throws I0Exception, SQLException
{

}
The above method has both IOException and SQLException listed in throws
clause. There can be any number of exceptions defined using throws clause.

f/Statements

Complete Example of Java throws Clause

class Demo
{
static void throwMethod() throws NullPointerException
{
System.out.println ("Inside throwMethod");
throw new NullPointerException ("Demo");
}
public static void main(String args[])
{
try
{
throwMethod();
}
catch (NullPointerException exp)
{
System.out,println ("The exception get caught" +exp);
}
}

}
The output of the above program is:

Inside throwMethod
The exception get caught java.lang.IllegalAccessException: Demo

Difference between throw and throws in
java

1. Throws clause in used to declare an exception and thow keyword is used
to throw an exception explicitly.

2. If we see syntax wise than throw is followed by an instance variable
and throws is followed by exception class names.

3. The keyword throw is used inside method body to invoke an exception
and throws clause is used in method declaration (signature).

for e.g.

Throw:

static(

try {

throw new Exception("Something went wrong!!®);
} catch (Exception exp) {
System.out.println("Error: "+exp.getMessage());

}
}

Throws:

public void sample() throws ArithmeticException{
J/Statements

Ffi¥ (Conditian : There is an error)
ArithmeticException exp = new ArithmeticException();

throw exp;

}

4. By using Throw keyword in java you cannot throw more than one
exception but using throws you can declare multiple exceptions. PFB the
examples.

for e.g.

Throw:

throw new ArithmeticException(“An integer should not be divided by zero!!")

throw new IOException("Connection failed!!")
Throws:

throws I0Exception, ArithmeticException, NullPointerException,
ArrayIndexQutOfBoundsException

No. throw throws
1) Java throw keyword is used to Java throws keyword is used to
explicitly throw an exception. declare an exception.
2) Checked exception cannot be Checked exception can be
propagated using throw only. propagated with throws. |
3) Throw is followed by an instance. Throws is followed by class.
4) Throw is used within the Throws is used with the method
method. | signature.
5) You cannot throw multiple You can declare multiple
| exceptions. exceptions e.g.
public void method()throws
IOException, SQLException.

What is Assertion?

Ans:

The assert keyword is used in assert statement which is a feature of
the Java programming language since Java 1.4. Assertion enables
developers to test assumptions in their programs as a way to defect and
fix bugs.

Syntax of assert statement
Syntax of an assert statement is as follow (short version):

assert expressiont,

or (full version):

assert expression1 : expression2,

Where:

« expression! must be a hoolesan expression.
« expression2 must return a value (must not return void).

The assert statement is working as follows:

o If assertion is enabled, then the z=s=sert statement will be
evaluated. Otherwise, it does not get executed.

o If expression1is evaluatedto false, an AssertionError error
is thrown which causes the program stops immediately. And
depending on existence of expression2:

« |f expression2 does not exist, then the AssertionErroris
thrown with no detail error message.

« |If expression2 does exist, then a String representation
of expressionZs return value is used as detail error message.

o If expressioniis evaluate to t rue, then the program continues
normally.

Enable assertion

By default, assertion is disabled at runtime. To enable assertion, specify
the switch —enableassertions or-ea at command line

of java program. For example, to enable assertion for the program
called CarManager:

java —-enableassertions CarManager

or this for short:

java —ea CarManager

Assertion examples

The following simple program illustrates the short version
of assert statement:

1 public class AssertionExample {

2 public staticvoidmain(String[] args) |

3 // get a number in the first argument
A int number = Integer.parselInt(args[0]);
5

6 assert number <= 10; // stops if number > 10
7

8 System.out.println ("BPass");

9

10 }

ddan)

When running the program above with this command:
java -ea AssertionExample 15

A java.lang.AssertionError error will be thrown:

Exception in thread "main™ java.lang.AssertionError

at
AssertionExample.main (AssertionExample.java:6)

But the program will continue and print out “Pass” if we pass a number
less than 10, in this command:

java -ea AssertionExample 8

And the following example is using the full version of assert statement:

1 publicclass AsserticonExample2 |

2 public staticveidmain(String[] args) |

3

4 int argCount = args.length;

5

6 assert argCount == 5: "The number of arguments must be 5";
7

8 System.out.println("OK");

9

10 }

n !

When running the program above with this command:

java -ea AssertionExample2123 4

it will throw this error:

Exception in thread "main"™ java.lang.AssertionError:
The number ¢f arguments must be 5

at
AssertionExampleZ.main(AssertionExample2. java:a)

Generally, assertion is enabled during development time to defect and fix
bugs, and is disabled at deployment or production to increase
performance.

What is Annotations?

Java Annotations allow us to add metadata information into our source code,
although they are not a part of the program itself. Annotations were added to
the java from JDK 5. Annotation has no direct effect on the operation of the
code they annotate (i.e. it does not affect the execution of the program).

In this tutorial we are going to cover following topics: Usage of annotations,
how to apply annotations, what predefined annotation types are available in
the Java and how to create custom annotations.

What’s the use of Annotations?

1) Instructions to the compiler: There are three built-in annotations available
in Java (@Deprecated, @Override & @SuppressWarnings) that can be used for giving
certain instructions to the compiler. For example the @override annotation is
used for instructing compiler that the annotated method is overriding the
method. More about these built-in annotations with example is discussed in
the next sections of this article.

2) Compile-time instructors: Annotations can provide compile-time
instructions to the compiler that can be further used by sofware build tools for
generating code, XML files etc.

3) Runtime instructions: We can define annotations to be available at
runtime which we can access using java reflection and can be used to give
instructions to the program at runtime. We will discuss this with the help of an
example, later in this same post.

Annotations basics

An annotation always starts with the symbol @ followed by the annotation
name. The symbol @ indicates to the compiler that this is an annotation.

For e.g. @Override
Here @ symbol represents that this is an annotation and the Override is the
name of this annotation.

Where we can use annotations?
Annotations can be applied to the classes, interfaces, methods and fields. For
example the below annotation is being applied to the method.

@override

void myMethod() {

{ /Do something
}

What this annotation is exactly doing here is explained in the next section but
to be brief it is instructing compiler that myMethody) is a overriding method which
is overriding the method (myMethod()) of super class.

Built-in Annotations in Java

Java has three built-in annotations:

« @Override
« @Deprecated
« @SuppressWarnings

1) @Override:

While overriding a method in the child class, we should use this annotation to
mark that method. This makes code readable and avoid maintenance issues,
such as: while changing the method signature of parent class, you must
change the signature in child classes (where this annotation is being used)
otherwise compiler would throw compilation error. This is difficult to trace
when you haven't used this annotation.

Example:

public class MyFarentClass {

public void justaMethod() {
System.out.println{"Parent class method"};
}

}

public class MyChildClass extends MyParentClass {

@override
public void justaMethod() {
System.out.println{"Child class method");
}
}

| believe the example is self explanatory. To read more about this annotation,
refer this article: @ Qverride built-in annotation.

2) @Deprecated

@ Deprecated annotation indicates that the marked element (class, method or
field) is deprecated and should no longer be used. The compiler generates a

warning whenever a program uses a method, class, or field that has already
been marked with the @Deprecated annotation. When an element is
deprecated, it should also be documented using the Javadoc @deprecated
tag, as shown in the following example. Make a note of case difference with
@Deprecated and @deprecated. @deprecated is used for documentation
purpose.

Example:

T

* @deprecated

* reason for why it was deprecated
@bDeprecated
public void anyMethodHere(){

f/ Do something

}
Now, whenever any program would use this method, the compiler would

generate a warning. To read more about this annotation, refer this
article: Java — @Deprecated annotation.

3) @SuppressWarnings

This annotation instructs compiler to ignore specific warnings. For example in
the below code, | am calling a deprecated method (lets assume that the
method deprecatedMethod() is marked with @Deprecated annotation) so the
compiler should generate a warning, however | am using

@ @SuppressWarnings annotation that would suppress that deprecation
warning.

@SuppressWarnings ("deprecation”)
vold myMethod() {
myObject .deprecatedMethod();

Creating Custom Annotations

« Annotations are created by using @interface, followed by annotation
name as shown in the below example.

« An annotation can have elements as well. They look like methods. For
example in the below code, we have four elements. We should not
provide implementation for these elements.

« All annotations extends java.lang.annotation.Annotation interface.
Annotations cannot include any extends clause.

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotationm.Inherited;
import java.lang.annctation.Retention;

import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Documented
@Target (ElementType .METHOD)
@Inherited
@Retention({RetentionPolicy. RUNTIME)
public @interface MyCustomAnnotation{
int studentAge() default 18;
String studentName();
String stuAddress();
String stuStream() default “"CSE";

}

Note: All the elements that have default values set while creating annotations
can be skipped while using annotation. For example if I'm applying the above
annotation to a class then | would do it like this:

@MyCustomAnnotation
studentName="Chaitanya”,
stuAddress="Agra, India"

)
public class MyClass {

}

As you can see, we have not given any value to

the studentAge and stuStreamelements as it is optional to set the values of these
elements (default values already been set in Annotation definition, but if you
want you can assign new value while using annotation just the same way as
we did for other elements). However we have to provide the values of other
elements (the elements that do not have default values set) while using
annotation.

Note: We can also have array elements in an annotation. This is how we can
use them:
Annotation definition:

@interface MyCustomAnnotation {
int count();
string[] books();

Usage:

@MyCustomAnnotation
count=3,
books={"C++", "lava"}
)
public class MyClass {

}
Lets back to the topic again: In the custom annotation example we have used

these four annotations: @Documented, @Target, @Inherited & @Retention. Lets
discuss them in detail.

@Documented

@Documented annotation indicates that elements using this annotation
should be documented by JavaDoc. For example:

jawva. lang.annotation.Documented

@Documented

public @interface MyCustomAnnotation {
ffAannotation body

}
@MyCustomannotation

public class MyClass {
//Class body
}

While generating the javadoc for class MyClass, the
annotation @MyCustomAnnotation would be included in that.

@Target

It specifies where we can use the annotation. For example: In the below code,
we have defined the target type as METHOD which means the below
annotation can only be used on methods.

impert java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target ({ElementType.METHOD})
public @interface MyCustomAnnotation {

}

public class MyClass {
@MyCustomAnnotation
public void myMethod()

{
}

}

Note: 1) If you do not define any Target type that means annotation can be
applied to any element.

2) Apart from ElementType. METHQOD, an annotation can have following
possible Target values.

ElementType.METHOD

ElementType.PACKAGE

ElementType.PARAMETER

ElementType. TYPE

ElementType. ANNOTATION_TYPE

ElementType. CONSTRUCTOR

ElementType.LOCAL VARIABLE

ElementType.FIELD

{/Doing something

@Inherited

The @Inherited annotation signals that a custom annotation used in a class
should be inherited by all of its sub classes. For example:

jawva. lang.annotation. Inherited

@Inherited
public @interface MyCustomAnnotation {

}
@MyCustomAnnotation
public class MyParentClass {

public class MyChildClass extends MyParentClass {

}

Here the class MyParentClass is using annotation @MyCustomAnnotationwhich is
marked with @inherited annotation. It means the sub class MyChildClass inherits
the @MyCustomAnnotation.

@Retention
It indicates how long annotations with the annotated type are to be retained.

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(Retent ionPolicy. RUNTIME)
@interface MyCustomAnnotation {

}
Here we have used RetentionPolicy.RUNTIME. There are two other options

as well. Lets see what do they mean:

RetentionPolicy. RUNTIME: The annotation should be available at runtime, for
inspection via java reflection.

RetentionPolicy.CLASS: The annotation would be in the .class file but it would not
be available at runtime.

RetentionPolicy. SOURCE: The annotation would be available in the source code of
the program, it would neither be in the .class file nor be available at the
runtime.

