
 SUB: DS Unit: 2

 Q.1 Explain Bubble sort and its algorithm.

Ans. Bubble sort:

 Bubble Sort is an algorithm which is used to sort N elements that are given in a

memory for eg: an Array with N number of elements. Bubble Sort compares all

the element one by one and sort them based on their values.

 It is called Bubble sort, because with each iteration the smaller element in the list

bubbles up towards the first place, just like a water bubble rises up to the water

surface.

 Sorting takes place by stepping through all the data items one-by-one in pairs

and comparing adjacent data items and swapping each pair that is out of order.

 SUB: DS Unit: 2

 SUB: DS Unit: 2

Q2. Explain Insertion sort with algorithm.

Ans. Insertion sort:

It is a simple Sorting algorithm which sorts the array by shifting elements one by one.

Following are some of the important characteristics of Insertion Sort.

1. It has one of the simplest implementation

2. It is efficient for smaller data sets, but very inefficient for larger lists.

3. Insertion Sort is adaptive, that means it reduces its total number of steps if given

a partially sorted list, hence it increases its efficiency.

4. It is better than Selection Sort and Bubble Sort algorithms.

5. Its space complexity is less, like Bubble Sorting, inerstion sort also requires a

single additional memory space.

6. It is Stable, as it does not change the relative order of elements with equal keys

 SUB: DS Unit: 2

Algorithm:

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Q.3 Explain Quick sort.

Ans. Quick sort:

 Quick Sort, as the name suggests, sorts any list very quickly. Quick sort is not

stable search, but it is very fast and requires very less aditional space. It is based

on the rule of Divide and Conquer(also called partition-exchange sort). This

algorithm divides the list into three main parts :

 Elements less than the Pivot element

 Pivot element

 Elements greater than the pivot element

 In the list of elements, mentioned in below example, we have taken 25 as pivot.

So after the first pass, the list will be changed like this.

 SUB: DS Unit: 2

 6 8 17 14 25 63 37 52

 Hnece after the first pass, pivot will be set at its position, with all the elements

smaller to it on its left and all the elements larger than it on the right. Now 6 8 17

14 and 63 37 52 are considered as two separate lists, and same logic is applied on

them, and we keep doing this until the complete list is sorted.

 Algorithm:

 Step 1 − Choose the highest index value has pivot

 Step 2 − Take two variables to point left and right of the list excluding pivot

 Step 3 − left points to the low index

 Step 4 − right points to the high

 Step 5 − while value at left is less than pivot move right

 Step 6 − while value at right is greater than pivot move left

 Step 7 − if both step 5 and step 6 does not match swap left and right

 Step 8 − if left ≥ right, the point where they met is new pivot

 SUB: DS Unit: 2

Q.5 What is Radix sort and its type?

Ans. Radix Sort:

 Radix sort was developed for sorting large integers, but it treats an integer as a

string of digits, so it is really a string sorting algorithm.

 Radix sort is a non-comparative sorting algorithm that sorts data with keys by

grouping keys by the individual digits which share the same significant position

and value.

 Radix Sort arranges the elements in order by comparing the digits of the numbers

LSD radix sort

 Least-significant-digit-first radix sort.

 LSD radix sorts process the integer representations starting from the least

significant digit and move the processing towards the most significant digit.

MSD radix sort

 Most-significant-digit-first radix sort.

 MSD radix sort starts processing the keys from the most significant digit,

leftmost digit, to the least significant digit, rightmost digit. This sequence is

opposite that of least significant digit (LSD) radix sorts

Algorithm

 This sorting algorithm doesn't compare the numbers but distributes them, it

works as follows:

1. Sorting takes place by distributing the list of number into a bucket by passing

through the individual digits of a given number one-by-one beginning with the

least significant part. Here, the number of buckets are a total of ten, which bare

key values starting from 0 to 9.

2. After each pass, the numbers are collected from the buckets, keeping the

numbers in order

3. Now, recursively redistribute the numbers as in the above step '1' but with a

following reconsideration: take into account next most significant part of the

number, which is then followed by above step '2'.

 SUB: DS Unit: 2

Q. 6 Explain Merge sort and how it works ?

Ans Merge sort:

 Merge Sort follows the rule of Divide and Conquer. But it doesn't divides the list into

two halves. In merge sort the unsorted list is divided into N sub lists, each having one

element, because a list of one element is considered sorted. Then, it repeatedly merge

these sub lists, to produce new sorted sub lists, and at lasts one sorted list is produced.

 Merge Sort is quite fast, and has a time complexity of O(n log n). It is also a stable sort,

which means the "equal" elements are ordered in the same order in the sorted list.

Complexity Analysis of Merge Sort

 Time complexity of Merge Sort is O(n Log n) in all 3 cases (worst, average and

best) as merge sort always divides the array in two halves and take linear time to

merge two halves.

 It requires equal amount of additional space as the unsorted list. Hence its not at

all recommended for searching large unsorted lists.

 It is the best Sorting technique for sorting Linked Lists.

 SUB: DS Unit: 2

 SUB: DS Unit: 2

Q.7 Explain Heap sort.

Ans. Heap Sort Algorithm

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-

case scenarios. Heap sort algorithm is divided into two basic parts :

 Creating a Heap of the unsorted list.

 Then a sorted array is created by repeatedly removing the largest/smallest

element from the heap, and inserting it into the array. The heap is reconstructed

after each removal.

What is a Heap ?

Heap is a special tree-based data structure, that satisfies the following special heap

properties :

Shape Property : Heap data structure is always a Complete Binary Tree, which means

all levels of the tree are fully filled.

Heap Property : All nodes are either [greater than or equal to] or [less than or equal to]

each of its children. If the parent nkodes are greater than their children, heap is called a

Max-Heap, and if the parent nodes are smalled than their child nodes, heap is called

Min-Heap.

 SUB: DS Unit: 2

Implementing Heap-Sort In-Place

 SUB: DS Unit: 2

Q. 8 Explain Selection sort.

Ans. Selection Sorting:

Selection sorting is conceptually the most simplest sorting algorithm. This algorithm

first finds the smallest element in the array and exchanges it with the element in the first

position, then find the second smallest element and exchange it with the element in the

second position, and continues in this way until the entire array is sorted.

The selection sort algorithm is performed using following steps...

Step 1: Select the first element of the list (i.e., Element at first position in the list).

Step 2: Compare the selected element with all other elements in the list.

Step 3: For every comparison, if any element is smaller than selected element (for

Ascending order), then these two are swapped.

Step 4: Repeat the same procedure with next position in the list till the entire list is

sorted.

 SUB: DS Unit: 2

Q. 9 What is Shell sort ?

Ans. Shell sort:

SHELL SORT ALGORITHM- EXPLANATION, IMPLEMENTATION AND

COMPLEXITY

Shell Sort is a generalized version of insertion sort. It is an in–place comparison sort.

Shell Sort is also known as diminishing increment sort, it is one of the oldest sorting

algorithms invented by Donald L. Shell (1959.)

Here are some key points of shell sort algorithm –

 Shell Sort is a comparison based sorting.

 Time complexity of Shell Sort depends on gap sequence . Its best case time

complexity is O(n* log) and worst case is O(n* log2n). Time complexity of Shell

sort is generally assumed to be near to O(n) and less than O(n2) as determining

its time complexity is still an open problem.

 The best case in shell sort is when the array is already sorted. The number of

comparisons is less.

 It is an in-place sorting algorithm as it requires no additional scratch space.

 Shell Sort is unstable sort as relative order of elements with equal values may

change.

 It is been observed that shell sort is 5 times faster than bubble sort and twice

faster than insertion sort its closest competitor.

 There are various increment sequences or gap sequences in shell sort which

produce various complexity between O(n) and O(n2).

input: an array num of length n with array elements numbered 0 to n - 1

Shell.Sort(num,n,key)

1. Assign, span = int(n/2)

2. while span > 0 do:

 a) for i from span to n - 1, Repeat step b,c,e

 b) assign num[i] to key and i to j

 c) while j = span and num[j - span] > key, Repeat step d

 d) swap num[j] and num[j - span]

 e) Assign, span = int(span / 2.2)

3. Use Insertion Sort to sort remaining array of data

 SUB: DS Unit: 2

Q. 10 Explain Linear search.

Ans. Searching:

 An algorithm is a step-by-step procedure or method for solving a problem by a

computer in a given number of steps.

 The steps of an algorithm may include repetition depending upon the problem

for which the algorithm is being developed.

 The algorithm is written in human readable and understandable form. To search

an element in a given array, it can be done in two ways Linear search and Binary

search.

Linear search:

 A linear search is the basic and simple search algorithm.

 A linear search searches an element or value from an array till the desired

element or value is not found and it searches in a sequence order.

 It compares the element with all the other elements given in the list and if the

element is matched it returns the value index else it return -1.

 Linear Search is applied on the unsorted or unordered list when there are fewer

elements in a list.

Linear search is implemented using following steps...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the first element in the list.

Step 3: If both are matching, then display "Given element found!!!" and terminate

the function

Step 4: If both are not matching, then compare search element with the next

element in the list.

Step 5: Repeat steps 3 and 4 until the search element is compared with the last

element in the list.

Step 6: If the last element in the list is also doesn't match, then display "Element

not found!!!" and terminate the function.

 SUB: DS Unit: 2

Q.11 Explain Binary Search.

Ans. Binary search algo:

Binary search is a fast search algorithm with run-time complexity of Ο(log n).

This search algorithm works on the principle of divide and conquers. For this

algorithm to work properly, the data collection should be in the sorted form.

 Binary search looks for a particular item by comparing the middle most item of

the collection.

 If a match occurs, then the index of item is returned. If the middle item is greater

than the item, then the item is searched in the sub-array to the left of the middle

item.

 Otherwise, the item is searched for in the sub-array to the right of the middle

item. This process continues on the sub-array as well until the size of the

subarray reduces to zero

Implementation binary search:

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

 SUB: DS Unit: 2

Example of a binary search to perform operation find(22), in a map with integer keys,

implemented with an ordered vector. For simplicity, we show the keys, not the whole

entries.

Algorithm BinarySearch(L,k, low,high):

Input: An ordered vector L storing n entries and integers low and high
Output: An entry of L with key equal to k and index between low and high, if
such an entry exists, and otherwise the special sentinel end

if low > high then
return end

else

mid←⌊(low+high)/2⌋ e←L.at(mid)

if k = e.key() then
return e
else if k < e.key() then

return BinarySearch(L,k, low,mid−1)

else

return BinarySearch(L,k,mid+1,high)

Q.12 Write a short note on Sequential (Linear) search.

Ans. Sequential search:
 When data items are stored in a collection such as a list, we say that they have a

linear or sequential relationship.

 Each data item is stored in a position relative to the others. In Python lists, these

relative positions are the index values of the individual items.

 Since these index values are ordered, it is possible for us to visit them in

sequence. This process gives rise to our first searching technique, the sequential

search.

 Figure 1 shows how this search works. Starting at the first item in the list, we

simply move from item to item, following the underlying sequential ordering

until we either find what we are looking for or run out of items.

 If we run out of items, we have discovered that the item we were searching for

was not present.

Linear search is implemented using following steps...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the first element in the list.

Step 3: If both are matching, then display "Given element found!!!" and terminate the

function

Step 4: If both are not matching, then compare search element with the next element in

 SUB: DS Unit: 2

the list.

Step 5: Repeat steps 3 and 4 until the search element is compared with the last element

in the list.

Step 6: If the last element in the list is also doesn't match, then display "Element not

found!!!" and terminate the function.

