
SEM 2 SUB: DS Unit: 1

 Introduction to Data Structures

 Data structure is representation of the logical relationship existing between individual

elements of data.

 In other words, a data structure is a way of organizing all data items that considers not only

the elements stored but also their relationship to each other.

 Data structure affects the design of both structural & functional aspects of a program.

Program=algorithm + Data Structure

 You know that a algorithm is a step by step procedure to solve a particular function.

 That means, algorithm is a set of instruction written to carry out certain tasks & the data

structure is the way of organizing the data with their logical relationship retained.

 To develop a program of an algorithm, we should select an appropriate data structure for

that algorithm. Therefore algorithm and its associated data structures from a program.

Classification of Data Structures :

 Data structure are normally divided into two broad categories:

1. Primitive Data Structure

2. Non-Primitive Data Structure

Primitive Data Structure

 There are basic structures and directly operated upon by the machine instructions.

 In general, there are different representation on different computers.

 Integer, Floating-point number, Character constants, string constants, pointers etc, fall in

this category.

Non-Primitive Data Structure

 There are more sophisticated data structures.

SEM 2 SUB: DS Unit: 1

 These are derived from the primitive data structures.

 The non-primitive data structures emphasize on structuring of a group of homogeneous

(same type) or heterogeneous (different type) data items.

 Lists, Stack, Queue, Tree, Graph are example of non-primitive data structures.

 The design of an efficient data structure must take operations to be performed on the data

structure.

 The most commonly used operation on data structure are broadly categorized into following

types:

1. Create

2. Selection

3. Updating

4. Searching

5. Sorting

6. Merging

7. Destroy or Delete

Different between them

 A primitive data structure is generally a basic structure that is usually built into the

language, such as an integer, a float.

 A non-primitive data structure is built out of primitive data structures linked together in

meaningful ways, such as a or a linked-list, binary search tree, AVL Tree, graph etc.

Description of various

Data Structures : Arrays

 An array is defined as a set of finite number of homogeneous elements or same data items.

 It means an array can contain one type of data only, either all integer, all float-point

number or all character.

Arrays

 Simply, declaration of array is as follows:

 int arr[10]

 Where int specifies the data type or type of elements arrays stores.

 “arr” is the name of array & the number specified inside the square brackets is the number

of elements an array can store, this is also called sized or length of array.

 Following are some of the concepts to be remembered about arrays:

1. The individual element of an array can be accessed by specifying name of the

array, following by index or subscript inside square brackets.

2. The first element of the array has index zero[0]. It means the first element

SEM 2 SUB: DS Unit: 1

and last element will be specified as:arr[0] & arr[9].Respectively.

3. The elements of array will always be stored in the consecutive (continues)

memory location.

4. The number of elements that can be stored in an array, that is the size of

array or its length is given by the following equation:

5. (Upperbound-lowerbound)+1

6. For the above array it would be (9-0)+1=10,where 0 is the lower bound of

array and 9 is the upper bound of array.

7. Array can always be read or written through loop. If we read a one-

dimensional array it require one loop for reading and other for writing the

array.

8. For example: Reading an array

For(i=0;i<=9;i++)

 scanf(“%d”,&arr[i]);

9. For example: Writing an array

 For(i=0;i<=9;i++)

 printf(“%d”,arr*i+);

10. If we are reading or writing two-dimensional array it would require two

loops. And similarly the array of a N dimension would required N loops.

11. Some common operation performed on array are:

 Creation of an array

 Traversing an array

 Insertion of new element

 Deletion of required element

 Modification of an element

 Merging of arrays

Lists

 A lists (Linear linked list) can be defined as a collection of variable number of data items.

 Lists are the most commonly used non-primitive data structures.

 An element of list must contain at least two fields, one for storing data or information and

other for storing address of next element.

 As you know for storing address we have a special data structure of list the address must be

pointer type.

SEM 2 SUB: DS Unit: 1

 Technically each such element is referred to as a node, therefore a list can be defined as a

collection of nodes as show bellow:

 Types of linked lists:

1. Single linked list

2. Doubly linked list

3. Single circular linked list

4. Doubly circular linked list

Stack

 A stack is also an ordered collection of elements like arrays, but it has a special feature that

deletion and insertion of elements can be done only from one end called the top of the

stack (TOP)

 Due to this property it is also called as last in first out type of data structure (LIFO).

 It could be through of just like a stack of plates placed on table in a party, a guest always

takes off a fresh plate from the top and the new plates are placed on to the stack at the top.

 It is a non-primitive data structure.

 When an element is inserted into a stack or removed from the stack, its base remains fixed

where the top of stack changes.

 Insertion of element into stack is called PUSH and deletion of element from stack is called

POP.

 The bellow show figure how the operations take place on a stack:

SEM 2 SUB: DS Unit: 1

 The stack can be implemented into two ways:

 Using arrays (Static implementation)

 Using pointer (Dynamic implementation)

Queue

 Queue are first in first out type of data structure (i.e. FIFO)

 In a queue new elements are added to the queue from one end called REAR end and the

element are always removed from other end called the FRONT end.

 The people standing in a railway reservation row are an example of queue.

 Each new person comes and stands at the end of the row and person getting their

reservation confirmed get out of the row from the front end.

 The bellow show figure how the operations take place on a stack:

 The queue can be implemented into two ways:

1. Using arrays (Static implementation)

2. Using pointer (Dynamic implementation)

Trees

 A tree can be defined as finite set of data items (nodes).

 Tree is non-linear type of data structure in which data items are arranged or stored in a

sorted sequence.

 Tree represent the hierarchical relationship between various elements.

 In trees:

 There is a special data item at the top of hierarchy called the Root of the tree.

 The remaining data items are partitioned into number of mutually exclusive subset, each of

which is itself, a tree which is called the sub tree.

 The tree always grows in length towards bottom in data structures, unlike natural trees

which grows upwards.

 The tree structure organizes the data into branches, which related the information.

SEM 2 SUB: DS Unit: 1

Graph

 Graph is a mathematical non-linear data structure capable of representing many kind of

physical structures.

 It has found application in Geography, Chemistry and Engineering sciences.

 Definition: A graph G(V,E) is a set of vertices V and a set of edges E.

 An edge connects a pair of vertices and many have weight such as length, cost and another

measuring instrument for according the graph.

 Vertices on the graph are shown as point or circles and edges are drawn as arcs or line

segment.

 Example of graph:

 Types of Graphs:

1. Directed graph, Undirected graph, Simple graph, Weighted graph, Connected

graph, Non-connected graph

ABSTRACT DATA TYPES

 One of the basic rules concerning programming is that no routine should ever exceed a
page. This is accomplished by breaking the program down into modules. Each module is a
logical unit and does a specific job. Its size is kept small by calling other modules. Modularity
has several advantages.

SEM 2 SUB: DS Unit: 1

1. it is much easier to debug small routines than large routines.
2. it is easier for several people to work on a modular program simultaneously.
3. a well-written modular program places certain dependencies in only one

routine, making changes easier.

 For instance, if output needs to be written in a certain format, it is certainly important to
have one routine to do this. If printing statements are scattered throughout the program, it
will take considerably longer to make modifications.

 The idea that global variables and side effects are bad is directly attributable to the idea that
modularity is good.

 An abstract data type (ADT) is a set of operations. Abstract data types are mathematical
abstractions; nowhere in an ADT's definition is there any mention of how the set of
operations is implemented. This can be viewed as an extension of modular design.

 Objects such as lists, sets, and graphs, along with their operations, can be viewed as abstract
data types, just as integers, reals, and Boolean s are data types. Integers, reals, and Boolean
s have operations associated with them, and so do abstract data types. For the set ADT, we
might have such operations as union, intersection, size, and complement. Alternately, we
might only want the two operations union and find, which would define a different ADT on
the set.

 The basic idea is that the implementation of these operations is written once in the
program, and any other part of the program that needs to perform an operation on the ADT
can do so by calling the appropriate function. If for some reason implementation details
need to change, it should be easy to do so by merely changing the routines that perform the
ADT operations. This change, in a perfect world, would be completely transparent to the
rest of the program.

 There is no rule telling us which operations must be supported for each ADT; this is a design
decision. Error handling and tie breaking (where appropriate) are also generally up to the
program designer. The three data structures that we will study in this chapter are primary
examples of ADTs. We will see how each can be implemented in several ways, but if they
are done correctly, the programs that use them will not need to know which
implementation was used.

Performance Analysis :

Space Complexity

 Space complexity of an algorithm represents the amount of memory space required by the

algorithm in its life cycle. The space required by an algorithm is equal to the sum of the

following two components –

1. A fixed part that is a space required to store certain data and variables, that

are independent of the size of the problem. For example, simple variables

and constants used, program size, etc.

2. A variable part is a space required by variables, whose size depends on the

SEM 2 SUB: DS Unit: 1

size of the problem. For example, dynamic memory allocation, recursion

stack space, etc. Space complexity S(P) of any algorithm P is S(P) = C + SP(I),

where C is the fixed part and S(I) is the variable part of the algorithm, which

depends on instance characteristic I.

 Following is a simple example that tries to explain the concept −

 Here we have three variables A, B, and C and one constant. Hence S(P) = 1+3. Now, space

depends on data types of given variables and constant types and it will be multiplied

accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time required by the algorithm to run to

completion. Time requirements can be defined as a numerical function T(n), where T(n) can be

measured as the number of steps, provided each step consumes constant time.

 For example, addition of two n-bit integers takes n steps. Consequently, the total computational

time is T(n) = c*n, where c is the time taken for the addition of two bits. Here, we observe that T(n)

grows linearly as the input size increases.

Time complexity of an algorithm signifies the total time required by the program to run to
completion. The time complexity of algorithms is most commonly expressed using the big O
notation.

Time Complexity is most commonly estimated by counting the number of elementary functions
performed by the algorithm. And since the algorithm's performance may vary with different types
of input data, hence for an algorithm we usually use the worst-case Time complexity of an
algorithm because that is the maximum time taken for any input size.

Types of Notations for Time Complexity

Now we will discuss and understand the various notations used for Time Complexity.

1. Big Oh denotes "fewer than or the same as" <expression> iterations.

2. Big Omega denotes "more than or the same as" <expression> iterations.

3. Big Theta denotes "the same as" <expression> iterations.

4. Little Oh denotes "fewer than" <expression> iterations.

SEM 2 SUB: DS Unit: 1

5. Little Omega denotes "more than" <expression> iterations.

Asymptotic Notations

 Asymptotic analysis of an algorithm refers to defining the mathematical boundation/framing

of its run-time performance. Using asymptotic analysis, we can very well conclude the best

case, average case, and worst case scenario of an algorithm.

 Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to

work in a constant time. Other than the "input" all other factors are considered constant.

 Asymptotic analysis refers to computing the running time of any operation in mathematical

units of computation. For example, the running time of one operation is computed as f(n)

and may be for another operation it is computed as g(n2). This means the first operation

running time will increase linearly with the increase in n and the running time of the second

operation will increase exponentially when n increases. Similarly, the running time of both

operations will be nearly the same if n is significantly small.

 Usually, the time required by an algorithm falls under three types –

1. Best Case − Minimum time required for program execution.

2. Average Case − Average time required for program execution.

3. Worst Case − Maximum time required for program execution.

Asymptotic Notations

Following are the commonly used asymptotic notations to calculate the running time complexity of an
algorithm.

 Ο Notation

 Ω Notation

 θ Notation

Big Oh Notation, Ο

 The notation Ο(n) is the formal way to express the upper bound of an algorithm's running
time. It measures the worst case time complexity or the longest amount of time an
algorithm can possibly take to complete.

SEM 2 SUB: DS Unit: 1

Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It

measures the best case time complexity or the best amount of time an algorithm can possibly take

to complete.

SEM 2 SUB: DS Unit: 1

SEM 2 SUB: DS Unit: 1

Theta Notation, θ

The notation θ(n) is the formal way to express both the lower bound and the upper bound of an

algorithm's running time. It is represented as follows −

SEM 2 SUB: DS Unit: 1

Divide and Conquer

 In divide and conquer approach, the problem in hand, is divided into smaller sub-problems

and then each problem is solved independently. When we keep on dividing the sub

problems into even smaller sub-problems, we may eventually reach a stage where no more

division is possible. Those "atomic" smallest possible sub-problem (fractions) are solved. The

solution of all sub-problems is finally merged in order to obtain the solution of an original

problem.

SEM 2 SUB: DS Unit: 1

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break

This step involves breaking the problem into smaller sub-problems. Sub-problems should

represent a part of the original problem. This step generally takes a recursive approach to divide

the problem until no sub-problem is further divisible. At this stage, sub-problems become atomic

in nature but still represent some part of the actual problem.

Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally, at this level, the problems

are considered 'solved' on their own.

Merge/Combine

When the smaller sub-problems are solved, this stage recursively combines them until they

formulate a solution of the original problem. This algorithmic approach works recursively and

conquer & merge steps works so close that they appear as one.

SEM 2 SUB: DS Unit: 1

Examples

The following computer algorithms are based on divide-and-conquer programming approach −

 Merge Sort

 Quick Sort

 Binary Search

 Strassen's Matrix Multiplication

 Closest pair (points)

There are various ways available to solve any computer problem, but the mentioned are a good

example of divide and conquer approach.

Dynamic programming

 Dynamic programming approach is similar to divide and conquer in breaking down the

problem into smaller and yet smaller possible sub-problems. But unlike, divide and

conquer, these sub-problems are not solved independently. Rather, results of these smaller

sub-problems are remembered and used for similar or overlapping sub-problems.

 Dynamic programming is used where we have problems, which can be divided into similar

sub-problems, so that their results can be re-used. Mostly, these algorithms are used for

optimization. Before solving the in-hand sub-problem, dynamic algorithm will try to

examine the results of the previously solved sub-problems. The solutions of sub-problems

are combined in order to achieve the best solution.

 So we can say that −

1. The problem should be able to be divided into smaller overlapping sub-

problem.

2. An optimum solution can be achieved by using an optimum solution of

smaller sub-problems.

3. Dynamic algorithms use memorization.

SEM 2 SUB: DS Unit: 1

Comparison

 In contrast to greedy algorithms, where local optimization is addressed, dynamic

algorithms are motivated for an overall optimization of the problem.

 In contrast to divide and conquer algorithms, where solutions are combined to achieve an

overall solution, dynamic algorithms use the output of a smaller sub-problem and then try

to optimize a bigger sub-problem. Dynamic algorithms use memorization to remember the

output of already solved sub-problems.

Example

 The following computer problems can be solved using dynamic programming approach −

1. Fibonacci number series

2. Knapsack problem

3. Tower of Hanoi

4. All pair shortest path by Floyd-Warshall

5. Shortest path by Dijkstra

6. Project scheduling

 Dynamic programming can be used in both top-down and bottom-up manner. And of

course, most of the times, referring to the previous solution output is cheaper than

recomputing in terms of CPU cycles.

Back Tracking Method

Pending

Performance measurement

Pending

