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Graph Traversals – DFS 

 

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also 

used to decide the order of vertices to be visit in the search process. A graph traversal finds 

the egdes to be used in the search process without creating loops that means using graph 

traversal we visit all verticces of graph without getting into looping path. 

Or 

A graph is a pictorial representation of a set of objects where some pairs of objects are 

connected by links. The interconnected objects are represented by points termed as vertices, 

and the links that connect the vertices are called edges. 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of 

edges, connecting the pairs of vertices. Take a look at the following graph − 

 

In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Graph Data Structure 

Mathematical graphs can be represented in data structure. We can represent a graph using an 

array of vertices and a two-dimensional array of edges. Before we proceed further, let's 

familiarize ourselves with some important terms − 

 Vertex − Each node of the graph is represented as a vertex. In the following example, 

the labeled circle represents vertices. Thus, A to G are vertices. We can represent 

them using an array as shown in the following image. Here A can be identified by 

index 0. B can be identified using index 1 and so on. 

 Edge − Edge represents a path between two vertices or a line between two vertices. In 

the following example, the lines from A to B, B to C, and so on represents edges. We 

can use a two-dimensional array to represent an array as shown in the following 

image. Here AB can be represented as 1 at row 0, column 1, BC as 1 at row 1, column 

2 and so on, keeping other combinations as 0. 
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 Adjacency − Two node or vertices are adjacent if they are connected to each other 

through an edge. In the following example, B is adjacent to A, C is adjacent to B, and 

so on. 

 Path − Path represents a sequence of edges between the two vertices. In the following 

example, ABCD represents a path from A to D. 

 

Basic Operations 

Following are basic primary operations of a Graph − 

 Add Vertex − Adds a vertex to the graph. 

 Add Edge − Adds an edge between the two vertices of the graph. 

 Display Vertex − Displays a vertex of the graph. 
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Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack 

to remember to get the next vertex to start a search, when a dead end occurs in any iteration. 

 

As in the example given above, DFS algorithm traverses from A to B to C to D first then to 

E, then to F and lastly to G. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a 

stack. 

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up 

all the vertices from the stack, which do not have adjacent vertices.) 

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Step Traversal Description 

1. 

 

Initialize the stack. 
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2. 

 

Mark S as visited and put it onto the 

stack. Explore any unvisited adjacent 

node from S. We have three nodes and 

we can pick any of them. For this 

example, we shall take the node in an 

alphabetical order. 

3. 

 

Mark A as visited and put it onto the 

stack. Explore any unvisited adjacent 

node from A. Both S and D are adjacent 

to A but we are concerned for unvisited 

nodes only. 

4. 

 

Visit D and mark it as visited and put 

onto the stack. Here, we have B and C 

nodes, which are adjacent to D and both 

are unvisited. However, we shall again 

choose in an alphabetical order. 

5. 

 

We choose B, mark it as visited and put 

onto the stack. Here B does not have any 

unvisited adjacent node. So, we pop B 

from the stack. 
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6. 

 

We check the stack top for return to the 

previous node and check if it has any 

unvisited nodes. Here, we find D to be 

on the top of the stack. 

7. 

 

Only unvisited adjacent node is from D 

is C now. So we visit C, mark it as 

visited and put it onto the stack. 

As C does not have any unvisited adjacent node so we keep popping the stack until we find a 

node that has an unvisited adjacent node. In this case, there's none and we keep popping until 

the stack is empty. 
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Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a 

queue to remember to get the next vertex to start a search, when a dead end occurs in any 

iteration. 

 

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C 

and G lastly to D. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in 

a queue. 

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 

Step Traversal Description 

1. 

 

Initialize the queue. 
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2. 

 

We start from visiting S (starting node), 

and mark it as visited. 

3. 

 

We then see an unvisited adjacent node 

from S. In this example, we have three 

nodes but alphabetically we choose A, 

mark it as visited and enqueue it. 

4. 

 

Next, the unvisited adjacent node from S 

is B. We mark it as visited and enqueue 

it. 

5. 

 

Next, the unvisited adjacent node from S 

is C. We mark it as visited and enqueue 

it. 

6. 

 

Now, S is left with no unvisited adjacent 

nodes. So, we dequeue and find A. 
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7. 

 

From A we have D as unvisited adjacent 

node. We mark it as visited and enqueue 

it. 

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we 

keep on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the 

program is over. 

 

 

Minimum spanning tree 

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges 

of a connected, edge-weighted undirected graph that connects all the vertices together, 

without any cycles and with the minimum possible total edge weight. That is, it is a spanning 

tree whose sum of edge weights is as small as possible. More generally, any undirected graph 

(not necessarily connected) has a minimum spanning forest, which is a union of the minimum 

spanning trees for its connected components. 

 

There are quite a few use cases for minimum spanning trees. One example would be a 

telecommunications company which is trying to lay out cables in new neighborhood. If it is 

constrained to bury the cable only along certain paths (e.g. along roads), then there would be 

a graph representing which points are connected by those paths. Some of those paths might 

be more expensive, because they are longer, or require the cable to be buried deeper; these 

paths would be represented by edges with larger weights. Currency is an acceptable unit for 

edge weight – there is no requirement for edge lengths to obey normal rules of geometry such 

as the triangle inequality. A spanning tree for that graph would be a subset of those paths that 

has no cycles but still connects to every house; there might be several spanning trees possible. 

A minimum spanning tree would be one with the lowest total cost, thus would represent the 

least expensive path for laying the cable. 
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Kruskal’s algo 

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This 

algorithm treats the graph as a forest and every node it has as an individual tree. A tree 

connects to another only and only if, it has the least cost among all available options and does 

not violate MST properties. 

To understand Kruskal's algorithm let us consider the following example − 

 

Step 1 - Remove all loops and Parallel Edges 

Remove all loops and parallel edges from the given graph. 

 

In case of parallel edges, keep the one which has the least cost associated and remove all 

others. 
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Step 2 - Arrange all edges in their increasing order of weight 

The next step is to create a set of edges and weight, and arrange them in an ascending order 

of weightage (cost). 

 

Step 3 - Add the edge which has the least weightage 

Now we start adding edges to the graph beginning from the one which has the least weight. 

Throughout, we shall keep checking that the spanning properties remain intact. In case, by 

adding one edge, the spanning tree property does not hold then we shall consider not to 

include the edge in the graph. 

 

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not 

violate spanning tree properties, so we continue to our next edge selection. 

Next cost is 3, and associated edges are A,C and C,D. We add them again − 
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Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. − 

 

We ignore it. In the process we shall ignore/avoid all edges that create a circuit. 

 

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on. 

 

Now we are left with only one node to be added. Between the two least cost edges available 7 

and 8, we shall add the edge with cost 7. 
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By adding edge S,A we have included all the nodes of the graph and we now have minimum 

cost spanning tree. 

 

PRIMS ALGO 

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses the greedy 

approach. Prim's algorithm shares a similarity with the shortest path first algorithms. 

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree and 

keeps on adding new nodes to the spanning tree from the given graph. 

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall use 

the same example − 

 

Step 1 - Remove all loops and parallel edges 

 

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the 

one which has the least cost associated and remove all others. 
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Step 2 - Choose any arbitrary node as root node 

In this case, we choose S node as the root node of Prim's spanning tree. This node is 

arbitrarily chosen, so any node can be the root node. One may wonder why any video can be 

a root node. So the answer is, in the spanning tree all the nodes of a graph are included and 

because it is connected then there must be at least one edge, which will join it to the rest of 

the tree. 

Step 3 - Check outgoing edges and select the one with less cost 

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8, 

respectively. We choose the edge S,A as it is lesser than the other. 

 

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We 

select the one which has the lowest cost and include it in the tree. 

 

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all 

the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the 

new edge, which is less than other edges' cost 8, 6, 4, etc. 
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After adding node D to the spanning tree, we now have two edges going out of it having the 

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again 

yield edge 2 as the least cost. Hence, we are showing a spanning tree with both edges 

included. 

 

We may find that the output spanning tree of the same graph using two different algorithms is 

same. 

 

FLOYD WARSHALL 

Floyd-Warshall algorithm is a procedure, which is used to find the shorthest (longest) paths 

among all pairs of nodes in a graph, which does not contain any cycles of negative lenght. 

The main advantage of Floyd-Warshall algorithm is its simplicity. 

Description 

Floyd-Warshall algorithm uses a matrix of lengths as its input. If there is an edge between 

nodes and , than the matrix contains its length at the corresponding coordinates. The 

diagonal of the matrix contains only zeros. If there is no edge between edges and , than the 

position contains positive infinity. In other words, the matrix represents lengths of all 

paths between nodes that does not contain any intermediate node. 

In each iteration of Floyd-Warshall algorithm is this matrix recalculated, so it contains 

lengths of paths among all pairs of nodes using gradually enlarging set of intermediate nodes. 

The matrix , which is created by the first iteration of the procedure, contains paths among 
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all nodes using exactly one (predefined) intermediate node. contains lengths using two 

predefined intermediate nodes. Finally the matrix uses intermediate nodes. 

This transformation can be described using the following recurrent formula: 

 

Because this transformation never rewrites elements, which are to be used to calculate the 

new matrix, we can use the same matrix for both and .  

 

 

 

 


