Heap tree:
A binary tree is a heap tree if it is an almost complete binary tree and has following properties:
— itisemptyor

— thekey in the root is larger than or equal to either child and both subtrees have the
heap property .(max-heap)

(Heap property (max-heap): Key in the root is larger than or equal to either child)

(2) {9‘ A (b) o (c) (2
{ - \ A M
OO ﬁ/ \Ef;\ é\/ \h‘\
pa P '/ _,;) _.-'_.f' NS
¥ .4 /
() ()G e : ¢
(&) (2)(G) l\ﬁj} (_5 |'_:~j| (3) (2/| @5

(a) isaheap.
(b) is not a heap as it is not complete
(c)is complete but does not satisfy the second property defined for heaps.

Two kinds of binary heaps:

m (14 '”(7_9\‘-) u)(éij‘/.
121 /12' @ '?) 121 (6) 3 ‘ (25/
P) % ==
) 53\ mu/ 1 '
0 (@® (&) (B Max-heaps
i (2\‘) &7 (1P0 11(11)
y 121 £ Y \ i
—~ 2N —< [} W 4 =S
121 (»7.‘, 31 »4) (20 '83' mi21‘
,'/" ‘M‘-,. /h- 2 =2 =
'l‘,'\ff s\ 61/ 1/
0 (8) () O

Min-heaps
Array Implementation of Heap:
If a node is stored at index k , and elements are stored from index 0 then
. Left child at index 2k+1

. Right child at index 2k+2

——

@

(D) j
9S4y
4 5 o T a a 10 11

|ET|33|34|EID|TE|E|3|B1|42|55|?3|21|E|3|

If child is at i position, parent will be at (i — 1)/2

@
@“_) B
£, 3@ SN

IET|EI-3|34|!EID|]'!EI|EIE-|B1|42|55|?3|21|EI:1|

* Q. Draw array implementation of following heap tree.

CHCEOCED (D
<

Creation of heap tree:
Inserting node into heap tree:
* Theinsertion algorithm consists of two steps
— Insert the new node in end (the new last node)

— Restore the heap-order property (Reheap Up/ Upheap)

Adding Node to Heap

Then compare nodes

Next node goes here

* Foreg. Insert 42 in following heap tree.

.
(2s) (=)
DESISED
<

e Put the new node in the next available slot.

Reheap Up :

e Push the new node upward, swapping with its parent until the new node reaches an
acceptable location. i.e. one of the following conditions must be satisfied.

— The parent has a key that is >= new node, or

— The node reaches the root

Ques1. Insert 5 into heap

Ques2. Insert 21 into heap

3632 29[17|22 20[28 16 [14]45] 0 [0 [0 [0 [0 [0 |
1 4 5 6 7 8 9 10

0 2 3

last=9

Insert 24 at last position

(36322917 [22]20]28]16]14[15[2a[0 [0 [0 [0 [0 |

o 1 2 3 4 5 6 7 8 9 10

last = last + 1
heap[last] = data
reheapUp (heap, last)

Reheap Up

— T —
363229 47]]22 [20[28 6 144524 0 [0 [0 [0 [0

parent = (newNode — 1)/2

if(heap[newNode] > heap[parent])
swap(newNode, parent)
reheapUp(heap, parent)

Now satisfies heap property, so reheap up stops here

[36[32]29]17[24[20]28]16[14[15[22] 0 [0 [0 [0 [0 |

Insertion: ALGORITHM:
Algorithm InsertHeap (heap <array of data type>, last<index>, data<datatype>)

Pre: heap is an array of data working as heap, last is index of last element in heap, data is data to be
inserted in heap

Return : returns true if data inserted, false otherwise
1. if (heap full)
1. return false
2. last=last+1
3. heapllast] = data
4. reheapUp (heap, last)
5. returntrue
Reheap Up:
Algorithm reheapUp (heap <array of data type>,newNode<index>)
Pre: heap is an array of data working as heap, newNode is index of new element inserted in heap
Return : new node placed at proper position
1. if (newNode not zero)
1. parent=(newNode-1)/2
2. if (heap[newNode] > heap[parent])
1. swap(newNode, parent) //exchange elements at newNode and parent index
2. reheapUp (heap, parent)

2. return

Deletion of node from heap tree :

¢ Perform deletion operation on following heap tree.

e

Deletion:

* The deletion algorithm consists of three steps
— Remove root and replace it with the key of the last node (say x)
— Remove x
— Restore the heap-order property (Reheap Down/ Down Heap).
Reheap Down:

* Push the out-of place node downward, swapping with its larger child until the new node reaches
an acceptable location, i.e.

— For children, all have keys <= the out-of-place node

— The node reaches the leaf.

* Deletion - Removing the Top of a Heap : Move the last node onto the root.

Deletion: heap tree

Remove (36) root

[36[32]20][17]22]20]28[16[14]15[0 [0 [0 [0 [0 0 |
1 2 3 4

0 5 6 7 8 9 10 11 12

data = heap|[0]

Replace it with last node (15)

15 [32 2947 [22 [20]28[16[14] 0 [0 [0 [0 [0 [0 o |

o 1 2 3 4 5 6 7 8 9 10 11 12

heap[0] = heapl[last]
last = last -1

Reheap Down

15 [32]29[17]22[20[28]16[14[0 [0 [o [0 [0 [0 [0]
0O 1 2 3 4 5 6 7 8 9 10 11 12
Compare both children of 15, that are 32 & 29. Exchange
15 with larger child that is 32

reheapDown(heap, O, last)

7N

é 0

[32]15]20[[17]22]20[28[16]14] 0 [0 [o [0 Jo o]0]
1 2 3 4 7 8 9 10

0 5 6 1 12

r4:)

0 28

Compare both children of 15 - 17 & 22. Exchange 15 with
22 as it is larger child

Now satisfies heap property, so reheap down stops here.

32]22[29]17 [15[20[28[16[1a] 0 [0 [0 [0 [o oo]

Deletion:

Algorithm DeleteHeap (heap <array of data type>, last<index>, data<datatype>)

Pre: heap - array of data working as heap, last - index of last element in heap, data - data deleted from

heap is stored in it
Return : returns true if data deleted, false otherwise
1. if (heap empty)
1. returnfalse
2. data =heap|0]
3. heap[0] = heapllast]
4. last=last-1
5. reheapDown (heap, 0, last)
6. returntrue
Reheap Down:

Algorithm reheapDown (heap <array of datatype>, root <index>, last<index>)

Pre: heap is an array of data working as heap, root of heap or subheap, last is the index of last element

in existing heaptree

Return : heap restored

1. if (root * 2 + 1 <=last) //check if left child exists //(i.e. atleast one child exists)

1. leftkey = heap[root * 2 + 1]
2. if (root * 2 + 2 <= last) // check if right child exists
1. rightkey = heap[root * 2 + 2]
3. else
1. rightkey = lowkey // low key:- some very low value ex. -1
1. if (leftkey > rightkey) // Find which is larger child
1. largechildkey = leftkey
2. largechildindex =root * 2 +1
2. else

1. largechildkey = rightkey

2. largechildindex =root * 2 + 2
3. if (heap[root] < heap[largechildindex])
// if parent < child, exchange parent and child
1. swap(root, largechildindex)
2. reheapDown (heap, largechildindex, last)

2. return //no child

Question : Deletion of heap tree : Perform two deletion operations on following
heap tree.

Heap sort:

* Build heap tree using data in given array. (Buildheap) i.e. insert element and perform reheap up
operation.

* Continuously delete topmost element and perform reheap down operation.
* Then the resultant array will be sorted array.

Algorithm heapSort (heap <array of datatype>, last<index>)

Pre: heap is an array of data working as heap, last is index of last element in array
Return : array gets sorted
1. index=1
1. while (index <= last)
1. reheapUp (heap, index)
2. index= index+1
2. lastdata = last
3. while (lastdata > 0)
1. exchange (heap, 0, lastdata)
2. lastdata =lastdata- 1
3. reheapDown(heap, 0, lastdata)

4. return

