
Heap tree:

• A binary tree is a heap tree if it is an almost complete binary tree and has following properties:

– it is empty or

– the key in the root is larger than or equal to either child and both subtrees have the
heap property .(max-heap)

 (Heap property (max-heap): Key in the root is larger than or equal to either child)

(a) is a heap.

(b) is not a heap as it is not complete

(c)is complete but does not satisfy the second property defined for heaps.

Two kinds of binary heaps:

Array Implementation of Heap:

If a node is stored at index k , and elements are stored from index 0 then

• Left child at index 2k+1

• Right child at index 2k+2

If child is at i position, parent will be at (i – 1)/2

• Q. Draw array implementation of following heap tree.

Creation of heap tree:

Inserting node into heap tree:

• The insertion algorithm consists of two steps

– Insert the new node in end (the new last node)

– Restore the heap-order property (Reheap Up/ Upheap)

• For eg. Insert 42 in following heap tree.

• Put the new node in the next available slot.

Reheap Up :

• Push the new node upward, swapping with its parent until the new node reaches an
acceptable location. i.e. one of the following conditions must be satisfied.

– The parent has a key that is >= new node, or

– The node reaches the root

Insertion: ALGORITHM:

Algorithm InsertHeap (heap <array of data type>, last<index>, data<datatype>)

Pre: heap is an array of data working as heap, last is index of last element in heap, data is data to be
inserted in heap

Return : returns true if data inserted, false otherwise

1. if (heap full)

1. return false

2. last = last+1

3. heap[last] = data

4. reheapUp (heap, last)

5. return true

Reheap Up:

Algorithm reheapUp (heap <array of data type>,newNode<index>)

Pre: heap is an array of data working as heap, newNode is index of new element inserted in heap

Return : new node placed at proper position

1. if (newNode not zero)

1. parent = (newNode-1)/2

2. if (heap[newNode] > heap[parent])

1. swap(newNode, parent) //exchange elements at newNode and parent index

2. reheapUp (heap, parent)

2. return

Deletion of node from heap tree :

• Perform deletion operation on following heap tree.

Deletion:

• The deletion algorithm consists of three steps

– Remove root and replace it with the key of the last node (say x)

– Remove x

– Restore the heap-order property (Reheap Down/ Down Heap).

Reheap Down:

• Push the out-of place node downward, swapping with its larger child until the new node reaches
an acceptable location, i.e.

– For children, all have keys <= the out-of-place node

– The node reaches the leaf.

• Deletion - Removing the Top of a Heap : Move the last node onto the root.

Deletion:

Algorithm DeleteHeap (heap <array of data type>, last<index>, data<datatype>)

Pre: heap - array of data working as heap, last - index of last element in heap, data - data deleted from
heap is stored in it

Return : returns true if data deleted, false otherwise

1. if (heap empty)

1. return false

2. data = heap[0]

3. heap[0] = heap[last]

4. last = last -1

5. reheapDown (heap, 0, last)

6. return true

Reheap Down:

Algorithm reheapDown (heap <array of datatype>, root <index>, last<index>)

 Pre: heap is an array of data working as heap, root of heap or subheap, last is the index of last element
in existing heaptree

Return : heap restored

1. if (root * 2 + 1 <= last) // check if left child exists //(i.e. atleast one child exists)

1. leftkey = heap[root * 2 + 1]

2. if (root * 2 + 2 <= last) // check if right child exists

1. rightkey = heap[root * 2 + 2]

3. else

1. rightkey = lowkey // low key:- some very low value ex. -1

1. if (leftkey > rightkey) // Find which is larger child

1. largechildkey = leftkey

2. largechildindex = root * 2 + 1

2. else

1. largechildkey = rightkey

2. largechildindex = root * 2 + 2

3. if (heap[root] < heap[largechildindex])

 // if parent < child, exchange parent and child

1. swap(root, largechildindex)

2. reheapDown (heap, largechildindex, last)

2. return //no child

Question : Deletion of heap tree : Perform two deletion operations on following

heap tree.

Heap sort:

• Build heap tree using data in given array. (Buildheap) i.e. insert element and perform reheap up
operation.

• Continuously delete topmost element and perform reheap down operation.

• Then the resultant array will be sorted array.

Algorithm heapSort (heap <array of datatype>, last<index>)

Pre: heap is an array of data working as heap, last is index of last element in array

Return : array gets sorted

1. index = 1

1. while (index <= last)

1. reheapUp (heap, index)

2. index = index + 1

2. lastdata = last

3. while (lastdata > 0)

1. exchange (heap, 0, lastdata)

2. lastdata = lastdata - 1

3. reheapDown(heap, 0, lastdata)

4. return

