
Graph

 Graph Representation:

• Adjacency matrix

• Adjacency List

Adjacency matrix:

• n by n matrix, where n is number of vertices

– A(m,n) = 1 iff (m,n) Є E ,

– 0 otherwise

• If Vi is adjacent to Vj, then place 1 at the i
th

 row and j
th

 column and 1 at j
th

row and i
th

 column; place 0 otherwise.

• The adjacency matrix is symmetric for a simple graph.

• Digraph - for each directed edge (Vi, Vj), we place 1 at i
th

 row and j
th

column

 Adjacency matrix, in general, is not symmetric for a digraph

• Weighted graph:

 A(m,n) = w (weight of edge), or positive infinity (or 0) otherwise

•
Advantages

– Simple

• Disadvantage

– Only one edge can be stored between any two vertices.

– Additional information about graph can not be stored.

– Insertion/ Deletion of node requires changing dimension of matrix.

– Wastage of space. Even if no edge is present in graph (null graph) of n

nodes, a n x n matrix will be allocated which will be containing all 0’s

(null matrix).

Adjacency list:

• For a graph G = (V,E) a list is formed for each element x of V, containing all

nodes y such that (x,y) Є E.

•

• Advantages

– Insertion/ Deletion simpler.

– Possible to store additional information of nodes and edges.

– Better when adjacency matrix is sparse

–

Traversal:

• Depth First Traversal: Beginning at a starting node depth-first search

(DFS) recursively visits the first yet undiscovered direct neighbor of every

reached node before continuing in the same manner with the remaining

neighbors at this node.

Algorithm DFT (G <graph>)

Pre: G is graph structure;Post: Graph traversed in Depth First

1. for (all v in G)

1. visited[v] = false

2. for (all v in G)

1. if (not visited[v])

1. traverse(v)

Algo traverse(v <vertex of graph>)

1. visited[v] = true

2. process v

3. for (all w adjacent to v)

1. if (not visited[w])

1. traverse(w)

• Breadth First Traversal: Beginning at a starting node breadth-first search

visits all of its direct neighbors (having distance 1) before it in turn uses

these already visited nodes as new starting nodes to continue with their

direct neighbors. That way, it visits all reachable nodes at distance k to the

original starting node before those at distance k+1.

Algorithm BFS (G <graph>)

Pre: G is graph structure;Post: Graph traversed in Breadth First

1. for (all v in G)

1. visited[v] = false

2. for (all v in G)

1. if (not visited[v])

1. add(v, queue)

2. while (queue not empty)

1. v = delete (queue)

2. if (not visited[v])

1. visited[v]=true

2. process v

3. for (all w adjacent to v)

1. if (not visited[w])

1. add(w, queue)

Spanning Trees:

• A spanning tree of a connected graph is the smallest set of edges such that

all nodes of the graph are connected. Addition of one more edge will result

into a cycle.

Minimum Spanning Trees (MST):

• A minimum spanning tree T of an graph G is a subgraph of G that connects

all the vertices in G at the lowest total cost.

• If weights of edges in a network are unique, then there will be a unique

MST. If there are duplicate weights, there can be more than one MST’s.

• MST is used as one of the most important tools to analyze computer

networks (e.g. cabling, network load capacity, optimal flow).

• Two algorithms:

– Prim's algorithm

– Kruskal's algorithm.

Prim's Algorithm:

• Include an edge of minimum cost in your Spanning Tree

• Repeatedly include the next edge (u, v)

– u should be in the tree , v should not be.

– Cost of (u, v) is minimum among all alternative edges (i.e., all edges

connected from any vertex/node in the tree built so far).

• The algorithm stops when all the nodes have been reached

Kruskal's Algorithm:

• The main idea is to

– start with a set (called forest) of singleton trees, and

– merge two trees at a time, unless it creates a cycle in the merged tree,

until the forest becomes one tree.

Find minimum spanning tree using kruskal’s algorithm

