
An object database is a database management system in which information is represented in

the form of objects as used in object-oriented programming. Object databases are different from

relational databases which are table-oriented. Object-relational databases are a hybrid of both

approaches.

STRUCTURED DATA TYPES

SQL allows users to define new data types, in addition to the built-in types

(e.g., integers). Distinct types stay within the standard relational model, since values of

these types must be atomic.

Define Structured Types / Overview of Structured Types / What is Abstract

Datatype? / How to define Structured types or Abstract datatypes? /

Structured type (Abstract datatype) definition in Oracle with example.

Structured Types

The major advantage of using objects is the ability to define new data types (Abstract Data

Types). In ORDBMS, the RDBMS extends the usage of objects that can be defined and stored as

part of database. Like a CLASS declaration in C++ language, a new type can be defined in an

ORDBMS as follows; (the reserved words/keywords are given in UPPERCASE hereafter)

CREATE TYPE type_name AS

(Attribute1_name data_type(size),

Attribute2_name data_type(size),

Attribute3_name data_type(size),

…….

AttributeN_name data+_type(size));

Here, data_type can be any of the following;

● It can be one of the valid data types like CHAR, VARCHAR, NUMBER, INTEGER, etc.

Or

● It can be another User Defined Type.

We call this kind of new User Defined Types as Structured Types / Abstract Datatypes.

For example, Structured types can be declared and used in SQL:1999 as follows;

CREATE TYPE phone AS

(Country_code NUMBER(4),

STD_Code NUMBER(5),

Phone_Number NUMBER(10))

[Vipin Dubey]educlash.com

https://www.educlash.com

This type can be used in other TYPE definition or TABLE definition as follows;

CREATE TABLE contact

(Contact_name VARCHAR(25),

Street VARCHAR(25),

City VARCHAR(25),

Ph PHONE);

In this TABLE definition, PHONE is the structured type that we have defined through previous

example.

Structured Types in Oracle

Let us see some examples of defining and manipulating Structured types in Oracle.

CREATE TYPE Address AS OBJECT

(Street VARCHAR(35),

City VARCHAR(30),

State VARCHAR(30),

Pincode NUMBER(10));

Execution of the above statement will create a new ABSTRACT datatype named ADDRESS and

store the definition as part of the database.

This new type can be used to define an attribute in any TABLEs or TYPEs as follows;

CREATE TABLE Person

(Person_name VARCHAR(25),

Addr ADDRESS,

Phone NUMBER(10));

This table Person will consist of 3 columns where the first one and the third one are of regular

datatypes VARCHAR, and NUMBER respectively, and the second one is of the abstract type

ADDRESS. The table PERSON will look like as follows;

Person_name Addr Phone

[Vipin Dubey]educlash.com

https://www.educlash.com

Street City State Pincode

Table 1 – Person table

OODBMS vs ORDBMS: Differences

The fundamental difference is really a philosophy that is carried all the way

through: OODBMS try to add DBMS functionality to a programming language,

where ORDBMS try to add richer data types to a relational DBMS.

Although the two kinds of object-databases are converging in terms of

functionality, this difference in their underlying philosophy (and for most systeIns,

their implementation approach) has important consequences in terMS of the

issues emphasized in the design of these DBMS and the efficiency with which

various features are supported, as the following comparison indicates:

● OODBMS aim to achieve seamless integration with a programming

language such as C++, Java, or Smalltalk. Such integration is not an

important goal for an ORDBMS. SQL:1999, like SQL-92, allows us to

embed SQL commands in a host language, but the interface is very

evident to the SQL programer.

● An OODBMS is aimed at applications where an object-centric viewpoint is

appropriate; that is, typical user sessions consist of retrieving a few objects

and working on theHl for long periods, with related objects (e.g., objects

referenced by the original objects) fetched occasionally. Objects may be

extremely large and may have to be fetched in pieces; therefore, attention

Must be paid to buffering parts of objects. It is expected that most

applications can cache the objects they require in memory, once the

objects are retrieved from disk. therefore, considerable attention is paid to

making references to ill-memory objects efficient. Transactions are likely to

be of very long duration and holding locks until the end of a transaction

may lead to poor performance; therefore, alternatives to Two-Phase

Locking must be used.

An ORDBMS is optimized for applications in which large data collections

are the focus, even though objects may have rich structure and be fairly

[Vipin Dubey]educlash.com

https://www.educlash.com

large. It is expected that applications will retrieve data from disk extensively and

optimizing disk access is still the main concern for efficient

execution. Transactions are assumed to be relatively short and traditional

RDBMS techniques are typically used for concurrency control and recovery.

● The query facilities of OQL are not supported efficiently in most ORDBMS,

whereas the query facilities are the centerpiece of an DBMS. To scene

extent, this situation is the result of different concentrations of effort in

the clevelopment of these systems. '1'0 a significant extent it is also a

consequence of the systems' being optimized. for very different kinds of

applications

[Vipin Dubey]educlash.com

https://www.educlash.com

