
4.1

Clustered Indexes

Definition - What does Clustered Index mean?

A clustered index is a type of index where the table records are
physically re-ordered to match the index.

Clustered indexes are efficient on columns that are searched for a
range of values. After the row with first value is found using a
clustered index, rows with subsequent index values are guaranteed to
be physically adjacent, thus providing faster access for a user query or
an application.

In other words, a clustered index stores the actual data, where a non-

clustered index is a pointer to the data. In most DBMSs, you can only

have one clustered index per table, though there are systems that

support multiple clusters (DB2 being an example).

Like a regular index that is stored unsorted in a database table, a

clustered index can be a composite index, such as a concatenation of

first name and last name in a table of personal information.

4.2, 4.3

Indexing in Databases

Indexing is a way to optimize performance of a database by minimizing the number of
disk accesses required when a query is processed.

An index or database index is a data structure which is used to quickly locate and

[Vipin Dubey]educlash.com

https://www.educlash.com

access the data in a database table.

Indexes are created using some database columns.

 The first column is the Search key that contains a copy of the primary key or candidate
key of the table. These values are stored in sorted order so that the corresponding data
can be accessed quickly (Note that the data may or may not be stored in sorted order).

 The second column is the Data Reference which contains a set of pointers holding the
address of the disk block where that particular key value can be found.

There are two kinds of indices:

1. Ordered indices: Indices are based on a sorted ordering of the values.

2. Hash indices: Indices are based on the values being distributed uniformly across a

range of buckets. The buckets to which a value is assigned is determined by function
called a hash function.

There is no comparison between both the techniques, it depends on the database
application on which it is being applied.

 Access Types: e.g. value based search, range access, etc.

 Access Time: Time to find particular data element or set of elements.

 Insertion Time: Time taken to find the appropriate space and insert a new data

time.

 Deletion Time: Time taken to find an item and delete it as well as update the index

structure.

 Space Overhead: Additional space required by the index.

Indexing Methods
Ordered Indices
The indices are usually sorted so that the searching is faster. The indices which are
sorted are known as ordered indices.

 If the search key of any index specifies same order as the sequential order of the file, it is
known as primary index or clustering index.

Note: The search key of a primary index is usually the primary key, but it is not

necessarily so.
 If the search key of any index specifies an order different from the sequential order of the

file, it is called the secondary index or non-clustering index.

Clustered Indexing
Clustering index is defined on an ordered data file. The data file is ordered on a non-key
field. In some cases, the index is created on non-primary key columns which may not
be unique for each record. In such cases, in order to identify the records faster, we will

[Vipin Dubey]educlash.com

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/07/indexing2.png
https://www.educlash.com

group two or more columns together to get the unique values and create index out of
them. This method is known as clustering index. Basically, records with similar
characteristics are grouped together and indexes are created for these groups.

For example, students studying in each semester are grouped together. i.e.
1st Semester students, 2nd semester students, 3rd semester students etc are grouped.

Clustered index sorted according to first name (Search key)

Primary Index
In this case, the data is sorted according to the search key. It induces sequential file
organisation.
In this case, the primary key of the database table is used to create the index. As
primary keys are unique and are stored in sorted manner, the performance of searching

operation is quite efficient. The primary index is classified into two types : Dense
Index and Sparse Index.

(I) Dense Index :

 For every search key value in the data file, there is an index record.
 This record contains the search key and also a reference to the first data record with that

search key value.

[Vipin Dubey]educlash.com

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/07/cluster_index.png
https://www.educlash.com

(II) Sparse Index :

 The index record appears only for a few items in the data file. Each item points to a block
as shown.

 To locate a record, we find the index record with the largest search key value less than
or equal to the search key value we are looking for.

 We start at that record pointed to by the index record, and proceed along the pointers in
the file (that is, sequentially) until we find the desired record.

[Vipin Dubey]educlash.com

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/07/indexing5.png
https://www.educlash.com

Non-Clustered Indexing
A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual
pointers or references to the location where the data is actually stored. Data is not
physically stored in the order of the index. Instead , data is present in leaf nodes. For
eg. the contents page of a book. Each entry gives us the page number or location of the
information stored. The actual data here(information on each page of book) is not
organised but we have an ordered reference(contents page) to where the data points
actually lie.

[Vipin Dubey]educlash.com

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/07/indexing6.png
https://www.educlash.com

It requires more time as compared to clustered index because some amount of extra
work is done in order to extract the data by further following the pointer. In case of
clustered index, data is directly present in front of the index.

Secondary Index
It is used to optimize query processing and access records in a database with some
information other than the usual search key (primary key). In this two levels of indexing
are used in order to reduce the mapping size of the first level and in general. Initially, for
the first level, a large range of numbers is selected so that the mapping size is small.
Further, each range is divided into further sub ranges.

In order for quick memory access, first level is stored in the primary memory. Actual
physical location of the data is determined by the second mapping level.

[Vipin Dubey]educlash.com

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/07/indexing3.png
https://www.educlash.com

Indexed Sequential Access Methods

Indexed Sequential Access Method (ISAM)

This is an advanced sequential file organization method. Here records are stored
in order of primary key in the file. Using the primary key, the records are sorted.
For each primary key, an index value is generated and mapped with the record.
This index is nothing but the address of record in the file.

[Vipin Dubey]educlash.com

http://www.geeksforgeeks.org/wp-content/uploads/gq/2016/07/indexing4.png
https://www.educlash.com

In this method, if any record has to be retrieved, based on its index value, the
data block address is fetched and the record is retrieved from memory.

Advantages of ISAM

 Since each record has its data block address, searching for a record in
larger database is easy and quick. There is no extra effort to search
records. But proper primary key has to be selected to make ISAM
efficient.

 This method gives flexibility of using any column as key field and index will
be generated based on that. In addition to the primary key and its index,
we can have index generated for other fields too. Hence searching
becomes more efficient, if there is search based on columns other than
primary key.

 It supports range retrieval, partial retrieval of records. Since the index is
based on the key value, we can retrieve the data for the given range of
values. In the same way, when a partial key value is provided, say
student names starting with ‘JA’ can also be searched easily.

Disadvantages of ISAM

 An extra cost to maintain index has to be afforded. i.e.; we need to have
extra space in the disk to store this index value. When there is multiple

[Vipin Dubey]educlash.com

https://www.educlash.com

key-index combinations, the disk space will also increase.

As the new records are inserted, these files have to be restructured to maintain
the sequence. Similarly, when the record is deleted, the space used by it needs
to be released. Else, the performance of the database will slow down.

B+ Tree File Organization

B+ Tree is an advanced method of ISAM file organization. It uses the same
concept of key-index, but in a tree like structure. B+ tree is similar to binary
search tree, but it can have more than two leaf nodes. It stores all the records
only at the leaf node. Intermediary nodes will have pointers to the leaf nodes.
They do not contain any data/records.

Consider a student table below. The key value here is STUDENT_ID. And each
record contains the details of each student along with its key value and the
index/pointer to the next value. In a B+ tree it can be represented as below.

[Vipin Dubey]educlash.com

https://www.tutorialcup.com/dbms/indexed-sequential-sccess-method.htm
https://www.educlash.com

Please note that the leaf node 100 means, it has name and address of student
with ID 100, as we saw in R1, R2, R3 etc above.

From the above B+ tree structure, it is evident that

 There is one main node called root of the tree – 105 is the root here.

 There is an intermediary layer with nodes. They do not have actual records
stored. They are all pointers to the leaf node. Only the leaf node contains
the data in sorted order.

 The nodes to the left of the root nodes have prior values of root and nodes
to the right have next values of the root. i.e.; 102 and 108 respectively.

 There is one final node, called leaf node, which has only values. i.e.; 100,
101, 103, 104, 106 and 107

 All the leaf nodes are balanced – all the leaf nodes at same distance from
the root node. Hence searching any record is easier.

 Searching any record is linear in this case. Any record can be traversed
through single path and accessed easily.

 Since the intermediary nodes have only pointers to the leaf node, the tree
structure is of shorter height. Shorter the height, faster is the traversal
and hence the retrieval of records.

Advantages of B+ Trees

[Vipin Dubey]educlash.com

https://www.educlash.com

 Since all records are stored only in the leaf node and are sorted sequential
linked list, searching is becomes very easy.

 Using B+, we can retrieve range retrieval or partial retrieval. Traversing
through the tree structure makes this easier and quicker.

 As the number of record increases/decreases, B+ tree structure
grows/shrinks. There is no restriction on B+ tree size, like we have in
ISAM.

 Since it is a balance tree structure, any insert/ delete/ update does not
affect the performance.

 Since we have all the data stored in the leaf nodes and more branching of
internal nodes makes height of the tree shorter. This reduces disk I/O.
Hence it works well in secondary storage devices.

Disadvantages of B+ Trees

 This method is less efficient for static tables.

DBMS - Hashing

For a huge database structure, it can be almost next to impossible to search

all the index values through all its level and then reach the destination data

block to retrieve the desired data. Hashing is an effective technique to

calculate the direct location of a data record on the disk without using index

structure.

Hashing uses hash functions with search keys as parameters to generate

the address of a data record.

Hash Organization

[Vipin Dubey]educlash.com

https://www.educlash.com

 Bucket − A hash file stores data in bucket format. Bucket is

considered a unit of storage. A bucket typically stores one

complete disk block, which in turn can store one or more

records.

 Hash Function − A hash function, h, is a mapping function that

maps all the set of search-keys K to the address where actual

records are placed. It is a function from search keys to bucket

addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function

always computes the same address. For example, if mod-4 hash function is

used, then it shall generate only 5 values. The output address shall always

be same for that function. The number of buckets provided remains

unchanged at all times.

[Vipin Dubey]educlash.com

https://www.educlash.com

Operation

 Insertion − When a record is required to be entered using static

hash, the hash function h computes the bucket address for

search key K, where the record will be stored.

Bucket address = h(K)

 Search − When a record needs to be retrieved, the same hash

function can be used to retrieve the address of the bucket where

the data is stored.

 Delete − This is simply a search followed by a deletion

operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state

for any static hash function. In this case, overflow chaining can be used.

 Overflow Chaining − When buckets are full, a new bucket is

allocated for the same hash result and is linked after the

previous one. This mechanism is called Closed Hashing.

[Vipin Dubey]educlash.com

https://www.educlash.com

 Linear Probing − When a hash function generates an address

at which data is already stored, the next free bucket is allocated

to it. This mechanism is called Open Hashing.

Dynamic Hashing

The problem with static hashing is that it does not expand or shrink

dynamically as the size of the database grows or shrinks. Dynamic hashing

provides a mechanism in which data buckets are added and removed

dynamically and on-demand. Dynamic hashing is also known as extended

hashing.

Hash function, in dynamic hashing, is made to produce a large number of

values and only a few are used initially.

[Vipin Dubey]educlash.com

https://www.educlash.com

Organization

The prefix of an entire hash value is taken as a hash index. Only a portion

of the hash value is used for computing bucket addresses. Every hash index

has a depth value to signify how many bits are used for computing a hash

function. These bits can address 2n buckets. When all these bits are

consumed − that is, when all the buckets are full − then the depth value is

increased linearly and twice the buckets are allocated.

Operation

 Querying − Look at the depth value of the hash index and use

those bits to compute the bucket address.

 Update − Perform a query as above and update the data.

[Vipin Dubey]educlash.com

https://www.educlash.com

 Deletion − Perform a query to locate the desired data and

delete the same.

 Insertion − Compute the address of the bucket

o If the bucket is already full.

 Add more buckets.

 Add additional bits to the hash value.

 Re-compute the hash function.

o Else

 Add data to the bucket,

o If all the buckets are full, perform the remedies of static

hashing.

Hashing is not favorable when the data is organized in some ordering and

the queries require a range of data. When data is discrete and random,

hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations

are done in constant time.

Extensible Hashing

Extendible hashing is a type of hash system which treats a hash as a bit string,
and uses a trie for bucket lookup.[1] Because of the hierarchical nature of the
system, re-hashing is an incremental operation (done one bucket at a time, as
needed). This means that time-sensitive applications are less affected by table
growth than by standard full-table rehashes.

Extendible hashing was described by Ronald Fagin in 1979. Practically all
modern filesystems use either extendible hashing or B-trees. In particular,

[Vipin Dubey]educlash.com

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/Extendible_hashing#cite_note-1
https://en.wikipedia.org/wiki/Ronald_Fagin
https://en.wikipedia.org/wiki/B-trees
https://www.educlash.com

the Global File System, ZFS, and the SpadFS filesystem use extendible
hashing.[2]

Example[edit]

Assume that the hash function returns a string of bits. The first i bits of each
string will be used as indices to figure out where they will go in the "directory"
(hash table). Additionally, i is the smallest number such that the index of every
item in the table is unique.

Keys to be used:

Let's assume that for this particular example, the bucket size is 1. The first
two keys to be inserted, k1 and k2, can be distinguished by the most significant
bit, and would be inserted into the table as follows:

Now, if k3 were to be hashed to the table, it wouldn't be enough to
distinguish all three keys by one bit (because both k3 and k1 have 1 as
their leftmost bit). Also, because the bucket size is one, the table would
overflow. Because comparing the first two most significant bits would give
each key a unique location, the directory size is doubled as follows:

And so now k1 and k3 have a unique location, being distinguished by
the first two leftmost bits. Because k2 is in the top half of the table, both
00 and 01 point to it because there is no other key to compare to that
begins with a 0.

[Vipin Dubey]educlash.com

https://en.wikipedia.org/wiki/Global_File_System
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/Extendible_hashing#cite_note-2
https://en.wikipedia.org/w/index.php?title=Extendible_hashing&action=edit§ion=1
https://en.wikipedia.org/wiki/File:Extendible_hashing_1.svg
https://en.wikipedia.org/wiki/File:Extendible_hashing_2.svg
https://www.educlash.com

Linear Hashing

Linear hashing is a dynamic hash table algorithm invented by Witold Litwin

(1980),[1] and later popularized by Paul Larson. Linear hashing allows for the

expansion of the hash table one slot at a time. The frequent single slot expansion

can very effectively control the length of the collision chain. The cost of hash

table expansion is spread out across each hash table insertion operation, as

opposed to being incurred all at once.[2] Linear hashing is therefore well suited for

interactive applications.

[Vipin Dubey]educlash.com

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Linear_hashing#cite_note-1
https://en.wikipedia.org/wiki/Paul_Larson
https://en.wikipedia.org/wiki/Linear_hashing#cite_note-2
https://www.educlash.com

