
 SCHEMA

Schema can be defined as the design of a database. A database schema

defines its entities and the relationship among them. Schema is

design to help programmers understand the database and make it

useful.

Design of a database is called the schema. Schema is of three types:

 Physical Schema

 Logical Schema

 View Schema

Physical Schema :-

Physical schema can be defined as the design of a database at its

physical level. In this level, it is expressed how data is stored in blocks

of secondary storage device. Pertains to the actual storage of

data like file, indices etc. For example At physical level records

are described as chunks of storage (in bytes, gigabytes, terabytes

or higher) in memory and these elements often remain hidden

from the programmers.

Logical Schema :-

Design at logical level is called logical schema, It defines tables,

views, and integrity of database constraints. In this level, the
programmers as well as the database administrator (DBA) work. The

internal details such as implementation of data structure is hidden at

this level (available at physical level). In logical level records can be
illustrated as fields and attributes along with their data type(s),
their relationship among each other can be logically implemented.
The programmers generally work at this level because they are
aware of such things about database systems.

View Schema :-

Design of database at view level is called view schema. This
generally describes end user interaction with database systems.
At view level, user can able to interact with system, with the help
of GUI and enter the details at the screen. The users are not
aware of the fact how the data is stored and what data is stored;
such details are hidden from them.

 Relational Schema

A relational database schema is the tables, columns and
relationships that make up a relational database. A relational
database schema helps you to organize and understand the
structure of a database. This is particularly useful when designing
a new database, modifying an existing database to support more
functionality, or building integration between databases.

Relational Schema are created in two steps:-

Logical Relational Schema:- The logical schema depicts the

structure of the database, showing the tables, columns and
relationships with other tables in the database by using
constraints and joins.

Physical Relational Schema:- The physical schema is created

by actually generating the tables, columns and relationships in
the relational database management software (RDBMS).

NOTE:- You could say that a database schema is made up of lots
of relation schema and shows how they work together.

For Example:-

There are two intersection entities in this schema:

Student/Course and Employee/Course. These handle the two
many-to-many relationship:

1) Between Student and Course, and

2) Between Employee and Course.

In the first case, a Student may take many Courses and a Course
may be taken by many Students. Similarly, in the second case,
an Employee (one of the types of Teachers) may teach many
Courses and a Course may be taught by many.

 Functional Dependency
Functional dependency is a relationship that exists when one
attribute uniquely determines another attribute. Functional
dependency (FD) is a set of constraints between two attributes in
a relation. One of the attributes is called the determinant and the
other attribute is called the determined.

 If R is a relation with attributes X and Y, a functional
dependency between the attributes is represented as X->Y, which
specifies Y is functionally dependent on X. Here X is a
determinant set and Y is a dependent attribute. Each value of X is
associated precisely with one Y value.

Types of Functional Dependencies

 Trivial functional dependency
 non-trivial functional dependency
 Multivalued dependency
 Transitive dependency

Inference Rules For Functional

Dependencies –

Let S be the set of functional dependencies that are specified
on relation schema R. Numerous other dependencies can be
inferred or deduced from the functional dependencies in S.

Example :

Let S = {A → B, B → C}

We can infer the following functional dependency from S:

A → C

Armstrong’s Inference Rules –

Let A, B and C and D be arbitrary subsets of the set of attributes
of the giver relation R, and let AB be the union of A and B.
Then,⇒→

 Reflexivity :
If B is subset of A, then A → B

 Augmentation :

If A → B, then AC → BC

 Transitivity :
If A → B and B → C, then A → C.

 Projectivity or Decomposition Rule :
If A → BC, Then A → B and A → C

https://beginnersbook.com/2015/04/trivial-functional-dependency-in-dbms/
https://beginnersbook.com/2015/04/non-trivial-functional-dependency-in-dbms/
https://beginnersbook.com/2015/04/multivalued-dependency-in-dbms/
https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/

 Proof :

 Step 1 : A → BC (GIVEN)

 Step 2 : BC → B (Using Rule 1, since B ⊆ BC)

 Step 3 : A → B (Using Rule 3, on step 1 and step 2)

 Union or Additive Rule :
If A→B, and A→C Then A→BC.

 Proof :

 Step 1 : A → B (GIVEN)

 Step 2 : A → C (given)

 Step 3 : A → AB (using Rule 2 on step 1, since AA=A)

 Step 4 : AB → BC (using rule 2 on step 2)

 Step 5 : A → BC (using rule 3 on step 3 and step 4)

 Pseudo Transitive Rule :
If A → B, DB → C, then DA → C

 Proof :

 Step 1 : A → B (Given)

 Step 2 : DB → C (Given)

 Step 3 : DA → DB (Rule 2 on step 1)

 Step 4 : DA → C (Rule 3 on step 3 and step 2)

 These are not commutative as well as associative.
i.e. if X → Y then
Y → X x (not possible)

 Composition Rule :
If A → B, and C → D, then AC → BD.

 Self Determination Rule :
A → A is a self determination rule.

Question 1: Prove or disprove the following inference rules
for functional dependencies. Note: Read "⇒" as implies a. {

X → Y, Z → W} ⇒ XZ → YW ?? b. {X → Y, XY → Z} ⇒ X → Z c.

{XY → Z, Y → W} ⇒ XW → Z

Solution :

Method : Use Armstrong's Axioms or Attribute closure to pr
ove or disprove.

a. {X → Y, Z → W} ⇒ XZ → YW ??

XZ → XZ

XZ → XW (Z -> W)

XZ → W (decomposition rule)

XZ → XZ

XZ → YZ (X -> Y)

XZ → Y (decomposition rule)

⇒ XZ → YW (union rule)

Hence True.

b. {X → Y, XY → Z} ⇒ X → Z ??

XY→Z

XX → Z (pseudotransitivity rule as X → Y)

⇒ X → Z

Hence True.

c. {XY → Z, Y → W} ⇒ XW → Z ??

W → W

X → X

Y → YW

Z → Z

WX → WX

WY → WY

WZ → WZ

XY → WXYZ

XZ → XZ

YZ → WYZ

Therefore WX → Z is not true

You can also find the attribute closure for WX and show th
at closure set does not contain Z.

Question 2: Consider a relational scheme R with attributes
A,B,C,D,F and the FDs A → BC B → E CD → EF Prove that fun
ctional dependency AD → F holds in R.
Step 1 : A → BC (Given)

Step 2 : A → C (Decomposition Rule applied on step 1)

Step 3 : AD → CD (Augmentation Rule applied on step 2)

Step 4 : CD → EF (Given)

Step 5 : AD → EF (transivity Rule applied on step 3 and 4)

Step 6 : AD → F (Decomposition Rule applied on step 5)

NORMALIZATION

Database normalization is a database schema design
technique, by which an existing schema is modified to
minimize redundancy and dependency of data. It was
developed by E. F. Codd.
It is a systematic approach of decomposing tables to eliminate
data redundancy. Normalization is a multi-step process that
puts the data into a tabular form by removing the duplicate
data from the relation tables. It removes all the duplication

issues and incorrect data issues, helping to have a well
designed database.

Features of Normalization

 Normalization avoids the data redundancy.
 It is a formal process of developing data structures.
 It promotes the data integrity.
 It ensures data dependencies make sense that means data

is logically stored.
 It eliminates the undesirable characteristics like Insertion,

Updation and Deletion Anomalies.

Types of Normalization

Following are the types of Normalization:
1. First Normal Form
2. Second Normal Form
3. Third Normal Form
4. Fourth Normal Form

5. Fifth Normal Form
6. BCNF (Boyce – Codd Normal Form)

First Normal Form:-

First Normal Form (1NF) is a simple form of Normalization. A
table is said to be in First Normal Form (1NF) if and only if
each attribute of the relation is atomic. It simplifies each
attribute in a relation. Each row in a table should be identified
by primary key it means each set of column must have a
unique value, it also specifies that No rows of data should

have repeating group of column values. A relation is in first
normal form if it does not contain any composite or multi-
valued attribute.

Example:-

Second Normal Form:-

A relation is said to be in a second normal form if and only if, it's
in first normal form. In 2NF, the table is required in 1NF. A
relation is in 2NF iff it has No Partial Dependency.

The above table is in 1NF. Each attribute has atomic values.
However, it is not in 2NF because non prime attribute
Employee_Age is dependent on ECode alone, which is a proper
subset of candidate key. This violates the rule for 2NF as the rule
says 'No non-prime attribute is dependent on the proper subset
of any candidate key of the table'.

Third Normal Form:-

For a relation to be in third normal form it should meet all the
requirements of both 1NF and 2NF. Third Normal Form (3NF)
is used to minimize the transitive redundancy. 3NF reduces
the duplication of data and also achieves the data integrity.

Example:-

In the above <Employee> table, EId is a primary key but City,
State depends upon Zip code.
 The dependency between Zip and other fields is called
Transitive Dependency. Therefore we apply 3NF. So, we need
to move the city and state to the new <Employee_Table2>
table, with Zip as a Primary key.

In the above example, using with the 3NF, there is no
redundancy of data while inserting the new records.T he City,
State and Zip code will be stored in the separate table. And
therefore the updation becomes more easier because of no
data redundancy.

 BCNF (Boyce – Code Normal Form)

Boyce and Codd Normal Form is a higher version of the Third
Normal form. BCNF is free from redundancy.

 Any table is said to be in BCNF, if its candidate keys do not
have any partial dependency on the other attributes. i.e.; in any
table with (x, y, z) columns, if (x, y)->z and z->x then it's a
violation of BCNF. If (x, y) are composite keys and (x, y)->z,
then there should not be any reverse dependency, directly or
partially.

Example:-

The functional dependencies are

The above table is not in BCNF as neither Empid nor DeptName
alone are keys. w e can break the table in three tables to make it
comply with BCNF.

So, now both the functional dependencies left side part is a key,
so it is in the BCNF.

 Denormalization

 Denormalization is the process of increasing the redundancy in the database. It

is the opposite process of normalization. It is mostly done for improving the

performance.

 It is a strategy that database managers use to increase the performance of a

database structure.

 Denormalization adds redundant data normalized database for reducing the

problems with database queries which combine data from the various tables

into a single table.

 The process of adding redundant data to get rid of complex join, in order to

optimize database performance. This is done to speed up database access by

moving from higher to lower form of normalization.

 Data is included in one table from another in order to eliminate the second

table which reduces the number of JOINS in a query and thus achieves

performance.

Decomposition

 Decomposition is the process of breaking down in parts or elements.

 It replaces a relation with a collection of smaller relations.

 It breaks the table into multiple tables in a database.

 It should always be lossless, because it confirms that the information in the

original relation can be accurately reconstructed based on the decomposed

relations.

 If there is no proper decomposition of the relation, then it may lead to

problems like loss of information.

Properties of Decomposition

Following are the properties of Decomposition,
1. Lossless Decomposition

2. Dependency Preservation
3. Lack of Data Redundancy

1. Lossless Decomposition

 Decomposition must be lossless. It means that the information should not get

lost from the relation that is decomposed.

 It gives a guarantee that the join will result in the same relation as it was

decomposed.

 STUDENT :

Roll_no Sname Dept

111 parimal COMPUTER

222 parimal ELECTRICAL

This relation is decomposed into two relation Stu_name and Stu_dept :

Stu_name: Stu_dept :

Roll_no Sname

111 parimal

222 parimal

Roll_no Dept

111 COMPUTER

222 ELECTRICAL

Now ,when these two relations are joined on the comman column 'roll_no' ,the resultant relation

will look like stu_joined.

2. Dependency Preservation

 Dependency is an important constraint on the database.

 Every dependency must be satisfied by at least one decomposed table.

 If {A → B} holds, then two sets are functional dependent. And, it becomes

more useful for checking the dependency easily if both sets in a same relation.

 This decomposition property can only be done by maintaining the functional

dependency.

 In this property, it allows to check the updates without computing the natural

join of the database structure.
3. Lack of Data Redundancy

 Lack of Data Redundancy is also known as a Repetition of Information.

 The proper decomposition should not suffer from any data redundancy.

 The careless decomposition may cause a problem with the data.

 The lack of data redundancy property may be achieved by Normalization

process.

