
Database
Management

System
Part-4

www.educlash.com

11

VIEWS

Unit Structure
11.0
11.1

Objectives
Introduction

11.0 OBJECTIVES:

 Introduction to views

 Data Independence

 Security

 Updates on views

 Comparison between tables and views

1. INTRODUCTION

Definition:

 A view is a virtual table that consists of columns from one or
more tables.

 A virtual table is like a table containing fields but it does not
contain any data. In run time it contains the data and after
that it gets free.

 But table stores the data in database occupy some space.
 Just like table, view contains Rows and Columns which is

fully virtual based table.

 Base Table -The table on which view is defined is called as
Base table.

www.educlash.com

2

CREATING A VIEW
This statement is used to create a view.

Syntax:
CREATE VIEW view_name

 The CREATE statement assigns a name to the view and
also gives the query which defines the view.

 To create the view one should must have privileges to
access all of the base tables on which view is defined.

 The create view can change name of column in view as per
requirements.

HORIZONTAL VIEW
A Horizontal view will restrict the user’s access to only a few rows
of the table.

Example:

Define a view for Sue (employee number 1004) containing only
orders placed by customers assigned to her.

CREATE VIEW SUEORDERS AS
SELECT *
FROM ORDERS
WHERE CUST IN
(SELECT CUST_NUM FROM CUSTOMERS WHERE
CUST_REP=1004)

VERTICAL VIEW
A vertical view restricts a user’s access to only certain columns of a
table.

Ex:
CREATE VIEW EMP_ADDRESS AS
SELECT EMPNO, NAME, ADDR1, ADDR2, CITY
FROM EMPLOYEE

ROW/COLUMN SUBSET VIEW.
 Views can be used to restrict a user to access only selected

set of rows and columns of a table in a database.

 This view generally helps us to visualize how view can
represent the base table.

 This type of view is combination of both horizontal and
vertical views.

www.educlash.com

3

Ex:
CREATE VIEW STUDENTS_PASSED AS
SELECT ROLLNO, NAME, PERCENTAGE
FROM STUDENTS
WHERE RESULT =’PASS’

GROUPED VIEW
 A grouped view is one in which query includes GROUPBY

CLAUSE.

 It is used to group related rows of data and produce only one
result row for each group.

Ex:
Find summary information of Employee Salaries in sales

Department.

Defining View

CREATE VIEW Summary_Empl_Sal
(
Total_Employees,
Minimum_salary,
Maximum_Salary,
Average_salary,
Total_salary
)
AS
SELECT COUNT(EmpID),
Min(Salary),
Max(Salary),
Avg(Salary),
SUM(Salary),
FROM Employee
GROUP BY Department
HAVING Department=’Sales’;

View Call
Selelct *
From Summary_Empl_Sal

The above Query will give,
Total No. Of Employees in sales Department, Minimum Salary in
sales Department.

www.educlash.com

4

Maximum Salary in sales Department.
Average Salary in sales Department.
Total Salary of Employees in sales Department.

JOINED VIEWS
 A Query based on more than one base table is called as

Joined View.

 It is also called as Complex View

 This gives a way to simplify multi table queries by joining two
or more table query in the view definition that draws its data
from multiple tables and presents the query results as a
single view.

 The view once it is ready we can retrieve data from multiple
tables without joining any table simply by accessing a view
created.

DROPPING VIEW
When a view is no longer needed, it can be removed by using
DROP VIEW statement.
Syntax:

DROP VIEW <VIEW NAME> [CASCADE/RESTRICT]

Ex:
Company database find out all EMPLOYEES
DEPARTMENTS.

for respective

Schema Definition:

EMPLOYEE-> EmpID, EmpName, Salary, DeptID
DEPARTMENT-> DeptID, DeptName

View Definition

CREATE VIEW Emp_Details
As
Select Employee,EmpID,
Department, DeptID,
Department, DeptName
From
Where Employee.DeptID=Department.DeptID;

View Call
Select * from Emp_Details

www.educlash.com

5

CASCADE: It deletes the view with all dependent view on original
view.

RESTRICT: It deletes the view only if they’re in no other view
depends on this view.

Example:
Consider that we have view VABC and VPQR .View VPQR
depends on VABC.

Query:
DROP view VABC

If we drop VABC, then cascading affect takes place and view
VPQR is also dropped.
Thus default option for dropping a view is CASCADE. The
CASCADE option tells DBMS to delete not only the named view,
but also query views that depend on its definition. But,

QUERY:
DROP view VABC RESTRICT

Here, the query will fail because of RESTRICT option tells DBMS to
remove the view only if no other views depend on it. Since VPQR
depends on VABC, will cause an error.

UPDATING VIEWS
 Records can be updated, inserted, and deleted though

views.

 UPDATAEBLE VIEWS are those in which views are used
against INSERT, DELETE and UPDATE statements.

The following conditions must be fulfilled for view updates:
 DISTINCT must not be specified; that is, duplicate rows must

not be eliminated from the query results.

 The FROM clause must specify only one updateable table;
that is, the view must have a Single source table for which
the user has the required privileges. If the source table is
itself a view, then that view must meet these criteria.

 Each select item must be a simple column reference; the
select list cannot contain expressions, calculated columns,
or column functions.

 The WHERE clause must not include a subquery; only
simple row-by-row search conditions may appear.

 The query must not include a GROUP BY or a HAVING
clause.

www.educlash.com

6

Data Independence

A major purpose of a database system is to provide the users with
an abstract view of data.

To hide the complexity from users database apply different levels of
abstraction. The following are different levels of abstraction.

i. Physical Level
ii. Logical Level
iii. View Level

Physical Level

 Physical Level is the lowest level of abstraction and it
defines the storage structure.

 The physical level describes complex low level data
structures in detail.

 The database system hides many of the lowest level storage
details from the database programmers.

 Database Administrators may be aware of certain details of
physical organization of data.

Logical Level

 This is the next higher level of abstraction which describe
what data are stored in database, relation between data,
types of data etc .

 Database programmers, DBA etc knows the logical structure
of data

View Level

 This the highest level of abstraction.

 It provides different view to different users. At the view level
users see a set of application programs that hide details of
data types.

 The details such as data type etc are not available at this
level.

 Only view or Access is given to a part of data according to
the users access right

Physical Data Independence

The changes in Physical Level does not affect or visible at the
logical level.
This is called physical data independence.

www.educlash.com

7

Logical Data Independence
The changes in the logical level do not affect the view level.
This is called logical data independence.

ADVANTAGES OF VIEWS

1.Security Each user can be given permission to access the
database only through a small set of views that contain the specific
data the user is authorized to see, thus restricting the user’s access
to stored data.

2.Query simplicity A view can draw data from several different tab
present it as a single table, turning multi table queries into single-tab
queries against the view.

3.Structural simplicity Views can give a user a personalized view
of the database structure, presenting the database as a set of
virtual tables that make sense for that user.

4.Insulation from change A view can present a consistent,
unchanged image of the structure of the database, even if the
underlying source tables are split, restructured, or renamed. Note,
however, that the view definition must be updated whenever
underlying tables or columns referenced by the view are renamed.

5.Data integrity If data is accessed and entered through a view,
the DBMS can automatically check the data to ensure that it meets
specified integrity constraints.

DISADVANTAGES OF VIEWS
While views provide substantial advantages, there are also three
major disadvantages to using a view instead of a real table:

• Performance
Views create the appearance of a table, but the DBMS must still
translate queries against the view into queries against the
underlying source tables.

If the view is defined by a complex multitable query, then even a
simple query against the view becomes a complicated join, and it
may take a long time to complete.

However, the issue isn’t because the query is in a view—any poorly
constructed query can present performance problems—the hazard
is that the complexity is hidden in the view, and thus users are not
aware of how much work the query is performing.

www.educlash.com

8

• Manageability
Like all database objects, views must be managed. If developers

and database users are allowed to freely create views without
controls or standards, the DBA’s job becomes that much more
difficult.

This is especially true when views are created that reference other
views, which in turn reference even more views.

The more layers between the base tables and the views, the more
difficult it is to resolve problems attributed to the views.

• Update restrictions
When a user tries to update rows of a view, the DBMS must
translate the request into an update on rows of the underlying
source tables.

This is possible for simple views, but more complex views cannot
be updated; they are
read-only.

COMPARISON BETWEEN TABLES AND VIEWS

VIEWS

 View comprises of Query in view definition.

 Just like table, view contains Rows and columns which is
fully virtual based table.

 The fields in a view are fields from one or more real tables in
the database.

 When view is called, it does not contain any data. For that, it
goes to memory and fetches data from base table and
displays it.

 E-g: - An I.T. Faculty requires only I.T. related data of
students so we can create view called as Stud_IT_View for
Faculty as below which will only depicts I.T. data of students
to I.T. faculty.

 A virtual table is like a table containing fields but it does not
contain any data. In run time it contains the data and after
that it gets free. But table stores the data in database occupy
some space.
Stud_IT_View (Student_Id,Student_Name, I.T.)
We can also add functions like WHERE and JOIN
statements to a view and present the data as if the data
were coming from one single table.

www.educlash.com

9

TABLES
 Table stores the data and database occupies some space in

database.

 Tables contain rows and columns, columns representing
fields and rows containing data or records.

EX:
Consider a Employee containing following columns,
EMPLOYEE (Emp_ID, EmpName, Designation, Address, Salary)

www.educlash.com

12

STRUCTURED QUERY LANGUAGE

Unit Structure
12.0
12.1

Objectives
Introduction

12.0 OBJECTIVES:

 Data Definition
 Aggregate Functions
 Null Values
 Nested Sub queries
 Joined relations
 Triggers

12.1 INTRODUCTION
 SQL stands for Structured Query Language
 It lets you access and manipulate databases.
 SQL was developed at IBM by Donald D. Chamberlin and

Raymond F. Boyce in the early 1970s.
 The first commercial relational database was released by

Relational Software (Later called as Oracle).
 SQL is not a case sensitive as it is a keyword based

language and each statement begins with a unique keyword.

FEATURES OF SQL

 SQL can execute queries against a database
 SQL can retrieve data from a database
 SQL can insert ,Update, Delete, records in a database
 SQL can create stored procedures in a database
 SQL can create views in a database

www.educlash.com

2

SQL COMMANDS:

 SQL commands are instructions used to communicate with
the database to perform specific task that work with data.

 SQL commands can be used not only for searching the
database but also to perform various other functions like, for
example, you can create tables, add data to tables, or
modify data, drop the table, set permissions for users.

 SQL commands are grouped into 2 major categories
depending on their functionality:

Data Definition Language (DDL) - These SQL commands are
used for creating, modifying, and dropping the structure of
database objects. The commands are CREATE, ALTER, DROP,
RENAME, and TRUNCATE.

Data Manipulation Language (DML) - These SQL commands are
used for storing, retrieving, modifying, and deleting data. These
commands are SELECT, INSERT, UPDATE, and DELETE.

DATA DEFINITION LANGUAGE (DDL)
 DDL statements are used to build and modify the objects

and structure of tables in database.
 The DDL part of SQL permits database tables to be created

or deleted.
 It also defines indexes (keys), specifies links between tables,

and imposes constraints between tables.
 The most important DDL statements in SQL are:

 CREATE TABLE - creates a new table
 ALTER TABLE - modifies a table
 DROP TABLE - deletes a table
 CREATE INDEX - creates an index (search key)
 DROP INDEX - deletes an index

a. CREATE COMMAND
This statement used to create Database.
Syntax:

CREATE TABLE tablename
(

column_name data_type attributes…,
column_name data_type attributes…,
…

)
• Table and column names can’t have spaces or be “reserved

words” like TABLE, CREATE, etc.

www.educlash.com

3

Example:

CREATE TABLE Employee
(

EmpId varchar2(10),
FirstName char(20),
LastName char(20),
Designation char(20),
City char(20)

);
OUTPUT:

b. ALTER COMMAND:
 This statement is used to make modifications to the table

structure.
 This statement is also used to add, delete, or modify

columns in an existing table

Syntax:
ALTER TABLE table_name
ADD column_name datatype

OR
ALTER TABLE table_name
DROP COLUMN column_name

OR
ALTER TABLE table_name
MODIFY COLUMN column_name

ALTER TABLE Employee
ADD DateOfBirth date

Example:

OUTPUT:

DROP COMMAND:

This statement is used to delete a table.

EMP_Id FirstName LastName Designation City DateOfBirth
1 Raj Malhotra Manager Mumbai

2 Henna Setpal Executive Delhi

Emp_Id FirstName LastName Designation City

www.educlash.com

4

Syntax:
DROP TABLE table_name

Example:
DROP TABLE Employee

DATA MANIPULATION LANGUAGE (DML)

DML is set of commands used to,
 Insert data into table
 Delete data from table
 Update data of table.

a. INSERT
The INSERT statement is used to insert a new row in a
table.

Syntax:
INSERT INTO table_name (column1, column2, column3,...)
VALUES (value1, value2, value3,...)

Example:
INSERT INTO Employee VALUES (4,'Nihar)
INSERT INTO Employee VALUES (5,'savita)
INSERT INTO Employee VALUES (6,'Diana)

OUTPUT:

b. DELETE
The DELETE statement is used to delete records in a table.

Syntax:
DELETE FROM table_name
WHERE some_column=some_value

EMP_Id FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai

2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

Emp_Id FirstName
4 Nihar

5 Savita
6 Diana

www.educlash.com

5

Example:

DELETE FROM Employee
WHERE LastName='Malhotra’ AND FirstName='Raj'

OUTPUT:

c. UPDATE
The UPDATE statement is used to update records in a table.

Syntax:
UPDATE table_name
SET column1=value, column2=value2,...
WHERE some_column=some_value

Example:

UPDATE Employee
SET Designation='CEO, City='Mumbai'
WHERE LastName='Sarkar’ AND FirstName='Nihar'

OUTPUT:

EMP_Id FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai

2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

EMP_Id FirstName LastName Designation City
2 Henna Setpal Executive Delhi

3 Aishwarya Rai Trainee Indore

EMP_Id FirstName LastName Designation City
2 Henna Setpal Executive Delhi

3 Aishwarya Rai Trainee Indore
4 Nihar Sarkar

EMP_Id FirstName LastName Designation City
2 Henna Setpal Executive Delhi

3 Aishwarya Rai Trainee Indore
4 Nihar Sarkar CEO Mumbai

www.educlash.com

6

SQL BASIC QUERIES

a. SELECT CLAUSE
This statement is used for various attributes or columns of a table.
SELECT can have 2 options as SELECT ALL OR SELECT
DISTINCT, where SELECT ALL is default select all rows from table
and SELECT DISTINCT searches for distinct rows of outputs.

Syntax:
SELECT * FROM table_name

b. FROM CLAUSE
This clause is used to select a Relation/Table Name in a database.

c. WHERE CLAUSE
This clause is used to put a condition on a query result.

Example:
Ex1: SELECT * FROM Employee

Ex 2: To select only the distinct values from the column named
"City" from the table above.
SELECT DISTINCT City
FROM Employee
WHERE City=’Mumbai’

Output:

Aliases

 SQL Aliases are defined for columns and tables.
 Basically aliases are created to make the column selected

more readable.

Example:
To select the first name of all the students, the query would be like:

EmpID FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai

2 Henna Setpal Executive Delhi
3 Aishwarya Rai Trainee Indore

EmpID FirstName LastName Designation City
1 Raj Malhotra Manager Mumbai

www.educlash.com

7

Aliases for columns:

SELECT FirstName AS Name
or
SELECT FirstName Name FROM Employee;

FROM Employee;

In the above query, the column FirstName is given a alias as
'name'.
So when the result is displayed the column name appears as
'Name' instead of 'FirstName'.

Output:

Aliases for tables:

SELECT e.FirstName FROM Employee e;

In the above query, alias 'e' is defined for the table Employee and
the column FirstName is selected from the table.

 Aliases is more useful when
 There are more than one tables involved in a query,
 Functions are used in the query,
 The column names are big or not readable,
 More than one columns are combined together

SQL ORDER BY

The ORDER BY clause is used in a SELECT statement to
sort results either in ascending or descending order. Oracle sorts
query results in ascending order by default.

Syntax

SELECT column-list
FROM table_name [WHERE condition]
[ORDER BY column1 [, column2, .. columnN] [DESC]];

Name
Raj

Henna
Aishwarya
Nihar

www.educlash.com

8

Database table "Employee";

Example:

To select the entire Employee from the table above, however, we
want to sort the empoyee by their last name.

SELECT * FROM Employee
ORDER BY LastName

Output:

ORDER BY DESC Clause

Using ORDER BY clause of a SELECT statement.

Example:
To select all the Employee from the table above, however, we want
to sort the empoyee descending by their last name.

SELECT *
ORDER BY LastName DESC

FROM Employee

OUTPUT:

EmpID Name LastName Designation S
a

1 Raj Malhotra Manager 56

2 Henna Setpal Executive 25
3 Aishwarya Rai Trainee 20

EmpID Name LastName Designation Salary City
1 Raj Malhotra Manager 56000 Mumbai

2 Henna Setpal Executive 25000 Delhi
3 Aishwarya Rai Trainee 20000 Indore

EmpID Name LastName Designation Salary City
3 Aishwarya Rai Trainee 20000 Indore

2 Henna Setpal Executive 25000 Delhi
1 Raj Malhotra Manager 56000 Mumbai

www.educlash.com

9

AGGREGATE FUNCTIONS

SQL aggregate functions return a single value, calculated from
values in a column.

Aggregate functions in SQL are as follows:

 AVG() – This functions returns the average value
 COUNT() - This functions returns the number of rows
 MAX() - This functions returns the largest value
 MIN() - This functions returns the smallest value
 SUM() - This functions returns the sum

Example

AVG() Function
The AVG() function returns the average value of a numeric

column.

This function first calculates sum of column and then divide
by total number of rows.

Syntax:
SELECT AVG(column_name) FROM table_name

Example:
Find average Marks of Students from above table.

SELECT AVG(Marks) AS AvgMarks FROM Employees

The result-set will look like this:

AvgMarks
89.3

StudID Name Marks
1 Rahul 90

2 Savita 90
3 Diana 80
4 Heena 99
5 Jyotika 89
6 Rubi 88

www.educlash.com

10

COUNT() Function
The COUNT() function returns the number of rows that matches a
specified criteria.

Syntax:
SELECT COUNT(column_name) FROM table_name

Example
SELECT COUNT(StudID) AS Count FROM Students

Count
6

SUM() Function
The SUM() function returns the total sum of a numeric column.
Syntax
SELECT SUM(column_name) FROM table_name

Example

Find total of marks scored by students.

Select SUM (Marks) as Sum from Students

OutPut:

SUM
536

MIN() Function

The MIN() function returns the smallest value
column.

of the selected

Syntax
SELECT MIN(column_name) FROM table_name

Example

Find minimum scored by students

Select MIN(Marks) as Min from Students

Min
80

www.educlash.com

11

MAX() Function

The MAX() function returns the largest value of the selected
column.

Syntax
SELECT MAX(column_name) FROM table_name

Example

Find maximum scored by students

Select MAX(Marks) as Max from Students

Max
90

NESTED SUB-QUERIES

 A query within a query is called Sub-Query.

 Subquery or Inner query or Nested query is a query in a query.

 Sub query in WHERE Clause (<>,, =, <>): It is used to select
some rows from main query.

 Sub query in HAVING Clause (IN/ANY/ALL): It is used to select
some groups from main querySubqueries can be used with the
following sql statements along with the comparison operators
like =, <, >, >=, <= etc.

SYNTAX:

SELECT select_Item
FROM table_name
WHERE expr_Operator(SELECT select_item
FROM Table_name)

Expression operator can be of 2 types:
1. Single Row Operator
2. Multiple-row Operator

Single Row Operator

A single-row subquery is one where the subquery returns
only one value. In such a subquery you must use a single-row
operator such as:

www.educlash.com

12

The single-row operators are used to write single-row
subqueries. The table below demonstrates the use of the single-
row operators in writing single-row subqueries.

Operator Query

Retreive the details

Example

of SELECT * FROM EMPLOYEES
= same salary as

employees who get the
the WHERE

employee whose ID
101.

is SALARY FROM EMPLOYEES
SALARY=(SELECT

WHERE EMPLOYEE_ID=101);

<>

Retreive the details of SELECT * ROM DEPARTMENTS
departments that are not WHERE
located in the same <>(SELECT
location ID as department FROM
10.

Retrieve the details

LOCATION_ID
LOCATION_ID

DEPARTMENTS
WHERE EPARTMENT_ID=10);

of SELECT *FROM EMPLOYEES
> employees whose salary is WHERE SALARY > (SELECT

greater than the minimum MIN(SALARY) FROM
salary.

Retrieve the details

EMPLOYEES);

of SELECT * FROM EMPLOYEES

>=
employees who were hired WHERE HIRE_DATE
on or after the same date (SELECT HIRE_DATE FROM
that employee 201 was EMPLOYEES WHERE
hired.

Retrieve the details

>=

EMPLOYEE_ID=201);

of SELECT * FROM EMPLOYEES

<
employees whose salary is WHERE SALARY
less than the maximum MAX(SALARY)
salary of employees
department 20.

in EMPLOYEES
DEPARTMENT_ID=20);

< (SELECT
FROM

WHERE

<=

Retrieve the details of SELECT * FROM EMPLOYEES
employees who were hired WHERE
on or before the same <=(SELECT
date that employee 201 FROM
were hired.

HIRE_DATE
HIRE_DATE
EMPLOYEES

WHERE EMPLOYEE_ID=201);

Operator Description

= Equal To

<> Not Equal To

> Greater Than

>= Greater Than Equal To

< Less Than

<= Less Than Equal To

www.educlash.com

13

A multiple row subquery is one where the subquery may
return more than one value. In such type of subquery, it is
necessary to use a multiple-row operator

The table below describes the multiple-row operators that
can be used when writing multiple-row subqueries:

The multiple-row operators are used to write multiple-row
subqueries. The table below demonstrates the use of the multiple-
row operators in writing multiple-row subqueries.

Operator Query

Retreive
department

Example

the SELECT

IN

ID, DEPARTMENT_NAME,
department name and LOCATION_ID
location ID of FROM DEPARTMENTS
departments that are WHERE LOCATION_ID IN
located in the same (SELECT LOCATION_ID FROM
location ID as a LOCATIONS WHERE

COUNTRY_ID='UK')location in the UK.

DEPARTMENT_ID,

>ALL
(Greater than salary is greater than WHERE
the maximum the all the salaries of (SELECT
returned by employees belonging FROM
the subquery)

Retrieve the first name SELECT
of employees whose FROM

to department 20.

FIRST_NAME
EMPLOYEES

SALARY > ALL
SALARY

EMPLOYEES
WHERE DEPARTMENT_ID=20)

<ALL
(Less than the salary is less than all WHERE
least value the
returned by employees belonging FROM
the subquery)

Retrieve the first name SELECT
of employees whose FROM

salaries of (SELECT

to department 20.

FIRST_NAME
EMPLOYEES

SALARY < ALL
SALARY

EMPLOYEES
WHERE DEPARTMENT_ID=20)

>ANY
(Greater than of
the minimum salary is greater than WHERE
value returned the minimum salary of (SELECT
by
subquery)

the employees
department 60.

Retrieve the first name SELECT
employees whose FROM

in EMPLOYEES

FIRST_NAME
EMPLOYEES

SALARY
SALARY

> ANY
FROM

WHERE
DEPARTMENT_ID=60)

Operator Meaning
IN Equal to any value returned by the subquery
ANY Compare value to each value returned by the subquery
ALL Compare value to every value returned by the subquery

www.educlash.com

14

<ANY
(Less than the of employees whose FROM
maximum salary is less than the WHERE SALARY < ANY
value returned maximum salary
by the employees
subquery) department 60.

Retrieve the first name SELECT

of (SELECT SALARY
in FROM EMPLOYEES WHERE

DEPARTMENT_ID=10)

FIRST_NAME
EMPLOYEES

EXISTS CLAUSE

 Exist Clause specifies a sub query to test for the existence of
rows.

 Their results type is in BOOLEAN format.
 It Returns TRUE if a sub query contains any rows

Example:

SELECT *
FROM suppliers
WHERE EXISTS

(select *
from orders
where suppliers.supplier_id = orders.supplier_id);

This select statement will return all records from the suppliers table
where there is at least one record in the orders table with the same
supplier_id.

NOT EXISTS CLAUSE

 The EXISTS condition can also be combined with the NOT
operator.

Example:

SELECT *
FROM suppliers
WHERE not exists (select * from orders Where
suppliers.supplier_id = orders.supplier_id);

This will return all records from the suppliers table where there are
no records in the orders table for the given supplier_id.

NULL VALUES

 NULL values represent missing unknown data.
 By default, a table column can hold NULL values.

www.educlash.com

15

 If a column in a table is optional, we can insert a new record
or update an existing record without adding a value to this
column. This means that the field will be saved with a NULL
value.

 NULL values are treated differently from other values.
 NULL is used as a placeholder for unknown or inapplicable

values.

"Employee" table:

Suppose that the "Address" column in the "Employee" table is
optional.

This means that if we insert a record with no value for the
"Address" column, the "Address" column will be saved with a NULL
value.

IS NULL VALUES

How do we select only the records with NULL values in the
"Address" column?
We will have to use the IS NULL operator:

SELECT FirstName, LastName, Address FROM Employee
WHERE Address IS NULL

Output:

IS NOT NULL VALUES
How do we select only the records with no NULL values in the
"Address" column?
We will have to use the IS NOT NULL operator:

SELECT LastName,FirstName,Address FROM Empoyee
WHERE Address IS NOT NULL

EmpId FirstName LastName Address City
1 Hussain Lakdhwala Santacruz

2 Elie Sen Juhu
Road

Santacruz

3 Ranbir Kapoor Bhayander

FirstName LastName Address
Hussain Lakdhwala

Ranbir Kapoor

www.educlash.com

16

Output:

JOINS

 Joins are used to relate information in different tables.
 A Join condition is a part of the sql query that retrieves rows

from two or more tables.
 A SQL Join condition is used in the SQL WHERE Clause of

select, update, delete statements.

Syntax for joining two tables is:

SELECT col1, col2, col3...
FROM table_name1, table_name2
WHERE table_name1.col2 = table_name2.col1;

If a sql join condition is omitted or if it is invalid the join
operation will result in a Cartesian product. The Cartesian product
returns a number of rows equal to the product of all rows in all the
tables being joined.

Example:
If the first table has 20 rows and the second table has 10 rows, the
result will be 20 * 10, or 200 rows.
This query takes a long time to execute.

Let us use the below two tables to explain the sql join conditions.

Database table "product";

FirstName LastName Address
Elie Sen Juhu Road

Product_id Product_name Supplier_name Unit_price

100 Camera Nikon 300

101 Television LG 100

102 Refrigerator Videocon 150

103 IPod Apple 75

104 Mobile Nokia 50

www.educlash.com

17

Database table "order_items";

Joins can be classified into Equi join and Non Equi join.

1) SQL Equi joins
2) SQL Non equi joins

1) SQL Equi joins

 It is a simple sql join condition which uses the equal sign as the
comparison operator. Two types of equi joins are SQL Outer
join and SQL Inner join.

Example:
We can get Information about a customer who purchased a
product and the quantity of product.

An equi-join is classified into two categories:
a) SQL Inner Join
b) SQL Outer Join

a) SQL Inner Join:
All the rows returned by the sql query satisfy the sql join condition
specified.

Example:
To display the product information for each order the query will be
as given below.

Since retrieving the data from two tables, you need to identify the
common column between these two tables, which is the product_id.

QUERY:
SELECT order_id, product_name, unit_price, supplier_name,
total_units
FROM product, order_items
WHERE order_items.product_id = product.product_id;

order_id product_id total_units customer
5100 104 30 Infosys
5101 102 5 Satyam
5102 103 25 Wipro
5103 101 10 TCS

www.educlash.com

18

The columns must be referenced by the table name in the
join condition, because product_id is a column in both the tables
and needs a way to be identified.

b) SQL Outer Join:
 Outer join condition returns all rows from both tables which

satisfy the join condition along with rows which do not satisfy
the join condition from one of the tables.

 The syntax differs for different RDBMS implementation.
 Few of them represent the join conditions as” LEFT OUTER

JOIN" and "RIGHT OUTER JOIN".

Example
Display all the product data along with order items data, with null
values displayed for order items if a product has no order item.

QUERY

SELECT p.product_id, p.product_name, o.order_id,
o.total_units
FROM order_items o, product p
WHERE o.product_id (+) = p.product_id;

Output:

SQL Self Join:
A Self Join is a type of sql join which is used to join a table to

it, particularly when the table has a FOREIGN KEY that references
its own PRIMARY KEY.

It is necessary to ensure that the join statement defines an
alias for both copies of the table to avoid column ambiguity.

Example

SELECT a.sales_person_id, a.name, a.manager_id,
b.sales_person_id, b.name
FROM sales_person a, sales_person b
WHERE a.manager_id = b.sales_person_id;

Product_id product_name order_id total_units
100 Camera
101 Television 5103 10
102 Refrigerator 5101 5
103 IPod 5102 25

www.educlash.com

19

2) SQL Non Equi Join:
A Non Equi Join is a SQL Join whose condition is

established using all comparison operators except the equal (=)
operator.
Like >=, <=, <, >

Example:
Find the names of students who are not studying either

Economics, the sql query would be like, (lets use Employee table
defined earlier.)

QUERY:

SELECT first_name, last_name, subject
FROM Employee
WHERE subject != 'Economics'

Output:

TRIGGERS

A trigger is an operation that is executed when some kind of
event occurs to the database. It can be a data or object change.

Creation of Triggers

 Triggers are created with the CREATE TRIGGER statement.

 This statement specifies that the on which table trigger is
defined and on which events trigger will be invoked.

 To drop Trigger one can use DROP TRIGGER statement.

Syntax:

CREATE TRIGGER [owner.]trigger_name
ON[owner.] table_name
FOR[INSERT/UPDATE/DELETE] AS
IF UPDATE(column_name)
[{AND/OR} UPDATE(COLUMN_NAME)...]
{ sql_statements }

first_name last_name subject
Anajali Bhagwat Maths
Shekar Gowda Maths
Rahul Sharma Science
Stephen Fleming Science

www.educlash.com

20

Triggers Types:

a. Row level Triggers
b. Statement Level Triggers

a. Row Level triggers-
A row level trigger is fired each time the table is affected by
the triggering statement.

Example:
 If an UPDATE statement updates multiple rows of a table, a

row trigger s fired once for each row affected by the update
statement.

 A row trigger will not run, if a triggering statement affects no
rows.

 If FOR EACH ROW clause is written that means trigger is
row level trigger.

b. Statement Level Triggers
A statement level trigger is fired once on behalf of the
triggering statement, regardless of the number of rows in the
table that the triggering statement affects, even If no rows
are affected.

Example:
 If a DELETE statement deletes several rows from a table, a

statement level DELETE trigger is fired only once.
 Default when FOR EACH ROW clause is not written in

trigger that means trigger is statement level trigger

Rules of Triggers

 Triggers cannot create or modify Database objects using
triggers

o For example, cannot perform “CREATE TABLE… or
ALTER TABLE” sql statements under the triggers

 It cannot perform any administrative tasks
o For example, cannot perform “BACKUP

DATABASE…” task under the triggers
 It cannot pass any kind of parameters
 It cannot directly call triggers
 WRITETEXT statements do not allow a trigger

Advantages of Triggers:-

Triggers are useful for auditing data changes or auditing
database as well as managing business rules.

www.educlash.com

21

Below are some examples:

 Triggers can be used to enforce referential integrity (For
example you may not be able to apply foreign keys)

 Can access both new values and old values in the database
when going to do any insert, update or delete

Disadvantages of Triggers

 Triggers hide database operations.
 For example when debugging a stored procedure, it’s

possible to not be aware that a trigger is on a table being
checked for data changes

 Executing triggers can affect the performance of a bulk
import operation .

Solution for Best Programming Practice

 Do not use triggers unnecessarily, if using triggers use them
to resolve a specific situation

 Where possible, replace a trigger operation with a stored
procedure or another kind of operation

 Do not write lengthy triggers as they can increase
transaction duration; and also reduce the performance of
data insert, update and delete operations as the trigger is
fired every time the operation occurs.

www.educlash.com

13
TRANSACTION MANAGEMENT

Unit Structure
13.0
13.1

Objectives
Introduction

TRANSACTION

 A transaction is a logical unit of work that contains one or more
SQL statements. A transaction is an atomic unit. The effects of
all the SQL statements in a transaction can be either all
committed (applied to the database) or all rolled back (undone
from the database).

 A transaction begins with the first executable SQL statement.

 A transaction ends when it is committed or rolled back, either
explicitly with a COMMIT or ROLLBACK statement or implicitly
when a DDL statement is issued.

 To illustrate the concept of a transaction, consider a banking
database. When a bank customer transfers money from a
savings account to a checking account, the transaction can
consist of three separate operation:

i.
ii.
iii.

Decrement the savings account
Increment the checking account
Record the transaction in the transaction journal

EXAMPLE:
To illustrate Banking transaction:

www.educlash.com

2

PROPERTIES OF TRANSACTION:

Four properties of Transaction: (ACID PROPERTIES)
1. Atomicity= all changes are made (commit), or none

(rollback).
2. Consistency = transaction won't violate declared system

integrity constraints
3. Isolation= results independent of concurrent transactions.
4. Durability= committed changes survive various classes of

hardware failure

ATOMICITY

 All-or-nothing, no partial results.

 An event either happens and is committed or fails and is
rolled back.

 EXAMPLE: In a money transfer, debit one account, credit
the other. Either both debiting and crediting.

 If a transaction ends, we say its commits, otherwise it aborts

www.educlash.com

3

 Transactions can be incomplete for three reasons:
1. It can be aborted by the DBMS,

2. A system crash.
3. The transaction aborts itself.

 When a transaction does not commit, its partial effects should
be undone

 Users can then forget about dealing with incomplete
transactions

 But if it is committed it should be durable

 The DBMS uses a log to ensure that incomplete transactions
can be undone, if necessary.

CONSISTENCY

 If the database is in a consistent state before the execution
of the transaction, the database remains consistent after the
execution of the transaction.

Example:

Transaction T1 transfers $100 from Account A to Account B. Both
Account A and Account B contains $500 each before the
transaction.

Transaction T1
Read (A)
A=A-100
Write (A)
Read (B)
B=B+10

Consistency Constraint

Before Transaction execution Sum = A + B
Sum = 500 + 500
Sum = 1000

After Transaction execution Sum = A + B
Sum = 400 + 600
Sum = 1000

Before the execution of transaction and after the execution
of transaction SUM must be equal.

www.educlash.com

4

ISOLATION

 Isolation requires that multiple transactions occurring at the
same time not impact each other’s execution.

 Example, if Joe issues a transaction against a database at
the same time that Mary issues a different transaction; both
transactions should operate on the database in an isolated
manner.

 The database should either perform Joe’s entire transaction
before executing Mary’s or vice-versa.

 This prevents Joe’s transaction from reading intermediate
data produced as a side effect of part of Mary’s transaction
that will not eventually be committed to the database.

 Note that the isolation property does not ensure which
transaction will execute first, merely that they will not
interfere with each other.

DURABILITY

 Durability ensures that any transaction committed to the
database will not be lost.

 Durability is ensured through the use of database backups
and transaction logs that facilitate the restoration of
committed transactions in spite of any subsequent software
or hardware failures.

TRANSACTION STATE DIAGRAM

The following are the different states in transaction
processing in a Database System.

1. Active
2. Partially Committed
3. Failed
4. Aborted
5. Committed

www.educlash.com

5

1. Active
This is the initial state. The transaction stay in this state while it
is executing.

2. Partially Committed
This is the state after the final statement of the transaction is
executed.

3. Failed
After the discovery that normal execution can no longer
proceed.

4. Aborted
The state after the transaction has been rolled back and the
database has been restored to its state prior to the start of the
transaction.

5. Committed
The state after successful completion of the transaction.
We cannot abort or rollback a committed transaction.

TRANSACTION SCHEDULE

When multiple transactions are executing concurrently, then
the order of execution of operations from the various transactions is
known as schedule.
Serial Schedule
Non-Serial Schedule

www.educlash.com

6

Serial Schedule
Transactions are executed one by one without any

interleaved operations from other transactions.

Non-Serial Schedule
A schedule where the operations from a set of concurrent

transactions are interleaved.

SERIALIZABILITY

What is Serializability?
A given non serial schedule of n transactions is serializable if it is
equivalent to some serial schedule.

i.e. this non serial schedule produce the same result as of the
serial schedule. Then the given non serial schedule is said to be
serializable.

A schedule that is not serializable is called a non-serializable.

Non-Serial Schedule Classification
Serializable
Not Serializable
Recoverable
Non Recoverable

Serializable Schedule Classification
Conflict Serializable
View Serializable

Conflict Serializable Schedule
If a schedule S can be transformed into a schedule S’ by a

series of swaps of non conflicting instruction then we say that S and
S’ are conflict equivalent.

A schedule S is called conflict serializable if it is conflict
equivalent to a serial schedule.

View Serializable Schedule
All conflict serializable schedule are view serializable.

But there are view serializable schedule that are not conflict
serializable.

A schedule S is a view serializable if it is view equivalent to a serial
schedule.

www.educlash.com

7

Recoverable Schedule Classification
Cascade
Cascadeless

To recover from the failure of a transaction Ti, we may have to
rollback several transactions.

This phenomenon in which a single transaction failure leads to a
series of transaction roll back is called cascading roll back.

Avoid cascading roll back by not allowing reading uncommitted
data.

But this lead to a serial schedule.

www.educlash.com

Thank You

www.educlash.com

