


Outline

 Distance based algo
 K - Nearest Neighbor Algo

 Decision Tree - based Algorithm
 ID3
 C4.5
 CART

 Statistical algo
 Bayesian Classification

 Neural Networks based algo
 Propagation

 Linear and non linear  regression



Tree-Structured rules

 Supervised learning

 The type of rule discussed can be represented by a tree.

 Trees that represent classification rules are called classification 
trees or decision trees & trees that represents regression rules 
are called regression trees.

 Tree-structured rules are very popular since they are easy to 
interpret and are very accurate.



Example

Age

Car Type NO

YESNO

<=25 >25

Sedan Sports, Truck

 Above fig shows Insurance risk example Decision Tree

 Each path from root node to a leaf node represents one classification rule.



Decision Trees

 Also called classification tree

 Graphical representation of set of classification rules

 Each internal node represents predictor / splitting 
attribute

 Each arc/ edge is labeled with predicate or splitting 
criteria

 Each leaf node is labeled with a class Cj



Decision Trees

Basic step

 Build the tree

 Apply the tree to the database



Decision Trees
 A decision tree is usually constructed in two phases.

 The growth phase

 The pruning phase

 In growth phase, an overly large tree is constructed. This tree 
represents the record in the input database very accurately.

 In pruning phase, the final size of the tree is determined.

 The rules represented by the tree constructed in phase one are 
usually overspecialized.

 By reducing the size of the tree, we generate a smaller number of 
more general rules that are better than a very large number of 
very specialized rules.



Decision Trees

 The splitting criterion at  a node is found through application of a split selection 
method.

 A split selection method is an algorithm that takes as input a relation and outputs 
the locally ‘best’ splitting criterion.

 Following is the decision tree induction schema:

Input: node n, partition D, split selection method S
Output: decision tree for D rooted at node n

BuildTree( Node n, Partition D, split selection method S)
Apply S to D to find the splitting criterion
If ( a good splitting criterion is found)

Create two children nodes n1 & n2 of n
Partition D into D1 & D2.
BuildTree(n1,D1,S)
BuildTree(n2,D2,S)

endif



ID3 Background

 “Iterative Dichotomizer 3”.

 Invented by Ross Quinlan in 1979.

 Generates Decision Trees using Entropy.

 Information Gain is used to select the most useful 
attribute for classification.

 Builds the tree in top down fashion.

 Succeeded by Quinlan’s C4.5 and C5.0 algorithms.



Entropy

 Introduced by Claude Shannon in 1948

 Quantifies “randomness”

 Lower value implies less uncertainty

 Higher value implies more uncertainty

 A completely homogeneous sample has entropy of 0

 An equally divided sample has entropy of 1

 Formula:

p+n            p+n      p+n        p+n

E(A) = ∑  pi+ni [  Ii (p,n)  ]

I(p,n)= -p   log 2 p        – n   log 2 n
p+n

Gain(A)  = I(p,n) – E(A)

TEMP p n I(p,n)

Hot 0 2 0
Mild 1 1 1
cold 1 0 0

IG of the table
Or
Entropy of the
starting set or parent table

Entropy of Attribute



Information Gain (IG)
 The information gain is based on the decrease in 

entropy after a dataset is split on an attribute.

 Can decide upon which attribute creates the most 
homogeneous branches?

 Formula: Gain(A)  = I(p,n) – E(A)

E(outlook)= [(2+3)/(9+5)](0.970)  + 0 + [(3+2)/14](0.970)
= 0.692

Gain (outlook)= IG - E(outlook)
= 0.940 – 0.692
= 0.248

Outlook p n I(p,n)

Sunny 2 3 0.970

Overcast 4 0 0

Rain 3 2 0.970



ID3

 ID3 is used to build DT based on information 
theory concept

 ID3 chooses splitting attribute with highest IG.

 IG is the info needed to make correct 
classification before split Vs info needed after 
split.

IG = Entropy of original dataset - Entropies of split dataset

Entropies of split dataset = Weighted sum of entropies 
after each of subdivided dataset

Weight of each dataset = fraction of dataset being placed 
in that division

E(outlook)= [(2+3)/(9+5)](0.970)  + 0 + [(3+2)/14](0.970)
= 0.692

Gain (outlook)= IG - E(outlook)
= 0.940 – 0.692
= 0.248

Outlook p n I(p,n)

Sunny 2 3 0.970

Overcast 4 0 0

Rain 3 2 0.970



ID3

 A branch set with entropy of 0 is a leaf node.

 Otherwise, the branch needs further splitting to classify 
its dataset.

 The ID3 algorithm is run recursively on the non-leaf 
branches, until all data is classified.



Overfitting
 During the construction of a DT , the tree repeatedly splits the data 

into node to get successively pure subsets of data 

 If nodes are fitting to noise in training data, model will not 
generalize well

 This occurs when model is too complex

 Complexity is determined by “no. of nodes” in the tree

 To avoid overfitting

 Post pruning

 Grow tree to max size , then prune based on validation set

 Computationally expensive method

 Replace sub tree with leaf node if generalization error improves or 
dose not change

 Pre pruning

 Stop growing the tree before fully grown to fit the training data

 Stop splitting when not statistically significant



Advantages of using ID3

 Understandable prediction rules are created from the 
training data.

 Builds the fastest tree.

 Only need to test enough attributes until all data is 
classified.

 Finding leaf nodes enables test data to be pruned, 

reducing number of tests.

 Whole dataset is searched to create tree.



Disadvantages of using ID3

 Data may be over-fitted or over-classified, if a small 
sample is tested.

 Smaller decision trees should be preferred over larger 
ones. This algorithm usually produces small trees, but it 
does not always produce the smallest possible tree

 Only one attribute at a time is tested for making a 
decision.

 Classifying continuous data may be computationally 
expensive. 



DT Advantages/Disadvantages
 Advantages:

 DTs are easy to use and efficient. 

 Rules generated are easy to interpret and understand

 They scale well for large databases as tree size is 
independent of database size.

 Trees can be constructed for data with many attributes.

 Disadvantages:

 Does not easily handle continuous data.

 May suffer from over fitting.

 Can be quite large – pruning is necessary.

 Correlations among attributes in the database are 
ignored in DT process



C4.5

 A successor of ID3 

 Builds DT using divide and conquer, top down, 
recursive approach

 Builds DT based on information theory concept

 It chooses splitting attribute with highest Gain Ratio

 It is ratio of IG for a splitting attribute and entropy of 
an attribute split (ignoring classes )

Split entropy



Gain Ratio
 Formula: Gain ratio(A)  = GAIN(A) /split entropy(A)

E(temp)= [(2+2)/14](1)  +[(4+2)/14] (0.09) + [(3+1)/14](0.81)
= 0.9110

Gain (temp)= IG - E(outlook)
= 0.940- 0.9110   

=0.0292 

temp p n I(p,n)

Hot 2 2 1

Mild 4 2 0.09

cool 3 1 0.81

Gain Ratio(temp)= 0.0292/0.926

Split info(temp)= -4/14    log2(4/14) -6/14 log2 (6/14) -4/14 log2 (4/14)

Split info(temp)= 0.926

I(2,2)=1

I(4,2)= -4/6    log2(4/6) -2/6 log2 (2/6) 



C4.5

1. Handles both continuous and discrete attributes

 The basic idea is to divide the data into ranges based 
on the attribute values for that item that are found in 
the training sample

2. Handling training data with missing attribute values 

 Missing attribute values are simply not used in gain 
ratio and entropy calculations

 To classify a record with a missing attribute value, the 
value for that item can be predicted based on what is 
known about the attribute values for the other records



C4.5

3. Pruning trees after creation 

 C4.5 goes back through the tree once it's been created 
and attempts to remove branches that do not help by 
replacing them with leaf nodes



EXAMPLE

To calculate the GainRatio for the gender split, we first find the 
entropy associated with the gender split (ignoring classes )

H(9/15, 6/15)=9/15 log(15/9)+6/15 log(15/6) = 0.292 

This gives the GainRatio value for the gender attribute as 

0.09688 = 0.332 
0.292 

The entropy for the split on height (ignoring classes ) is :

H(4/15, 7/15, 2/15, 2/15) 

C4.5



CART
• Classification and regression tree

• If the target variable is nominal ( categorical) then the tree is
called Classification tree.

• If the target variable is numerical (continuous) then the tree is
called Regression tree.

• CART handles missing data by ignoring them in calculating the
goodness of split on the attribute.

• CART contains pruning strategy.



CART
• Classification and regression trees (CART) is a technique that

generates a binary decision tree

• Unlike ID3, however, where a child is created for each
subcategory, only two children are created

• The splitting is performed around what is determined to be
the best split point.

• At each step, an exhaustive search is used to determine the
best split, where "best" is defined by a measure φ(s/t)



CART

 Create Binary Tree

 Formula to choose split point, s, for node t:

 This formula is evaluated at the current node, t, and 
for each possible splitting attribute and criterion, s
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CART

• L = left subtree of the current node

• R = Right subtree of the current node .

• PL= probability that a tuple in the training set will be on the Left    side 
of the tree

• PR= probability that a tuple in the training set will be on the Right side of the 
tree 
This is defined as [tuples in subtree]/ [tuples in training set]

• P(Cj|tL) is the probability that a tuple is in class, Cj, and in the left subtree

• P(Cj|tR) is the probability that a tuple is in class, Cj, and in the right subtree

• This is defined as the [tuples of class j in subtree]/ [tuples at the target node ]

• At each step, only one criterion is chosen as the best over all possible criteria
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Gender short medium Tall Total

F 3 6 0 9

M 1 2 3 6



gender

T=0S=3

F M

M=6 T=3S=1
M=2

Gender short medium Tall Total

F 3 6 0 9

M 1 2 3 6

9/15    6/15

3-1=2 6-2=4 3-0=3

Φ(gender) = 2 * 9/15  * 6/15 * (2/15 + 4/15 + 3/15)=0.224 



height Less 
than

Greater 
than

Total

1.6 0 15 15

1.7 2 13 11

1.8 5 10 5

1.9 9 6 3

2 12 3 9



height

T=0S=0

<1.6 >=1.6

M=0 T=3S=4
M=8

height S M T Total

<1.6 0 0 0 0

>=1.6 4 8 3 15

4 8 3
2*0/15  * 15/15 * 

Φ(1.6) = 2 * 0/15  * 15/15  (4/15 + 8/15 + 3/15)=0 



2*2/15  * 13/15 *  (0+8/15+3/15) =0.169

height S M T Total

<1.7 2 0 0 2

>=1.7 2 8 3 13

0 8 3

Φ(1.7) = 2 * 2/15  * 13/15  (0/15 + 8/15 + 3/15)=0.169 

height

T=0S=2

<1.7 >=1.7

M=0 T=3S=2
M=8

2*0/15  * 15/15 * 



height Less 
than

Greater 
than

1.6 0 15

1.7 2 13

1.8 5 10

1.9 9 6

2 12 3

height S M T Total

<1.8 4 1 0 5

>=1.8 0 7 3 10

4 6 3

Φ(1.8) = 2 * 5/15  * 10/15  (4/15 + 6/15 + 3/15)=0.385 

height

T=0S=4

<1.8 >=1.8

M=1 T=3S=0
M=7



CART Example

• At the start, there are six choices for split 
point (right branch on equality):

– P(Gender)=2(6/15)(9/15)(2/15 + 4/15 + 3/15)=0.224

– P(1.6) = 0

– P(1.7) = 2(2/15)(13/15)(0 + 8/15 + 3/15) = 0.169

– P(1.8) = 2(5/15)(10/15)(4/15 + 6/15 + 3/15) = 0.385

– P(1.9) = 2(9/15)(6/15)(4/15 + 2/15 + 3/15) = 0.256

– P(2.0) = 2(12/15)(3/15)(4/15 + 8/15 + 3/15) = 0.32

• Split at 1.8
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CART Example

 P( 1.6)=p(height<1.6)=0

 P( 1.7)=p(height<1.7)=2*(2/15)*(13/15)[|2/15-2/15)|+|0-
8/15|+|0-5/15)|]

 P( 1.8)= p(height<1.8)=2*(5/15)*(10/15)[|4/15-0|+|1/15-
7/15|+|0-3/15|]

 P( 1.9)= p(height<1.9)=2*(9/15)*(6/15)[|4/15-0|+|5/15-
3/15|+|0-3/15|]

 P( 2.0)= p(height<2.0)=2*(12/15)*(3/15)[|4/15-0|+|8/15-
0|+|0-3/15|]
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Bayesian Classification

 Bayes Rule or Bayes Theorem is

 Suppose there are m different hypotheses then

P(xi) = Σ P(xi |hj)P(hj)

P(h1 | xi) = P(xi |h1)P(h1)

P(xi)

 Here P(h1|xi) is called the posterior probability, while P(h1) is
the prior probability associated with hypothesis h1

 P(xi) is the probability of the occurrence of data value xi and
P(xi|h1) is the conditional probability that, given a hypothesis,
the tuple satisfies it.



Bayesian 
Classification



Car 
No.

color Type Origin stolen

1 Red sports domestic Y

2 Red sports Domestic N

3 Red Sports Domestic Y

4 Yellow Sports Domestic N

5 Yellow Sports Importer Y

6 Yellow SUV Importer N

7 Yellow SUV Importer Y

8 Yellow SUV Domestic N

9 Red SUV Importer N

10 Red Sports Importer Y

P(y)=5/10
P(n)=5/10

Color

P(red|y)= 3/5 P(red|N)=2/5

P(yellow|y)=2/5 P(yellow|N)=3/5

Type

P(SUV|y)=1/5 P(suv|N)=3/5

P(sports|y)=4/5 P(sports|n)=2/5

Origin

P(dom|y)=2/5 P(dom|N)=3/5

P(imp|y)=3/5 P(imp|n)=2/5

Sample X=(red&SUV&DOM) decision=?
Unlabeled sample

P(X|Y)   = P(red|Y)P(suv|Y)P(dom|Y) P(X|Y)=3/5 *  1/5 * 2/5  = 0.048

P(X|N) = P(red|N)P(suv|N)P(dom|N) P(X|N)= 2/5 *3/5*3/5       = 0.144

P(X|N) > P(X|Y)  therefore sample X is class “N”



Car 
No.

A1 A2 A3 Class

1 A C A C1

2 C A C C1

3 A A C C2

4 B C A C2

5 c c b C2

P(c1)=2/5
P(c2)=3/5

A1

P(a|C1)= P(a|C2)=

P(b|c1) = P(b|c2) =

P(c|c1)= P(c|c2)=

Sample X= A1=c, A2=c and A3=a   class ?

P(X|c1)   P(c1)= P(A1|c1)P(A2|c1)P(A3|c1)  P(c1) P(X|c1)=1/2 *  1/2 * 1/2  = 0.125

P(X|c2)   P(c2)= P(A1|c2)P(A2|c2)P(A3|c2)  P(c2) P(X|c2)= 1/3 *2/3*1/3       = 0.074

P(X|c1) > P(X|c2)  therefore sample X is class “c1”

A2

P(a|C1)= P(a|C2)=

P(b|c1) = P(b|c2) =

P(c|c1)= P(c|c2)=

A3

P(a|C1)= P(a|C2)=

P(b|c1) = P(b|c2) =

P(c|c1)= P(c|c2)=

Sample Y= A1=a, A2=c and A3=b   class ?







Bayesian 
Classification



Bayesian Classification

 Assuming that the contribution by all attributes are independent
and that each contributes equally to the classification problem,
a simple classification scheme called naive Bayes classification
has been proposed that is based
on Bayes rule of conditional probability

 By analyzing the contribution of each "independent" attribute, a
conditional probability is determined

 A classification is made by combining the impact that the
different attributes have on the prediction to be made

 The approach is called "naive" because it assumes the
independence between the various attribute values



Statistical-based algorithm (Bayesian 
Classification) 

• When classifying a target tuple, the conditional and prior
probabilities generated from the training set are used to make
the prediction

• This is done by combining the effects of the different attribute
values from the tuple

• Suppose that tuple ti has p independent attribute values
{xi1,xi2,...,xjp} .From the descriptive phase, we know P( xik|Cj), for
each class Cj and attribute xik

• We then estimate P(ti|Cj) by P(ti|Cj) = ∏P(xik|Cj)

• We then have the needed prior probabilities P(Cj) for each class
and the conditional probability P(ti|Cj)

• To calculate P(ti), we can estimate the likelihood that ti is in each
class. This can be done by finding the likelihood that this tuple is
in each class and then adding all these values



Statistical-based algorithm (Bayesian 
Classification) 

 The probability that ti is in a class is the product of the
conditional probabilities for each attribute value

 The posterior probability P(Cj|ti) is then found for each class

 The class with the highest probability is the one chosen for the
tuple.



Statistical-based algorithm (Bayesian 
Classification) 



Bayesian Classification

• There are 4 tuples classified as short, 8 as medium, and 3 as tall. 

• The Output classification uses the simple divisions shown below:
2 m ≤Height      Tall

1.7 m < Height < 2 m     Medium
Height ≤ 1. 7m                Short

• The Output2 results require a much more complicated set of divisions using, both height and gender attributes. 

• To facilitate classification, we divide the height attribute into six ranges: 

(0,1.6], (1.6, 1. 7], (1. 7, 1.8], (1.8, 1.9], (1.9,2.0], (2.0,∞) 



Statistical-based algorithm (Bayesian 
Classification) 

 With these training data, we estimate the prior probabilities: 

P(short) = 4/15 = 0.267, P(medium) = 8/15 = 0.533, 
and P(tall) = 3/15 = 0.2 

 We use these values to classify a new tuple. For example, 
suppose we wish to classify t = (Adam, M, 1.95 m)

 By using these values and the associated probabilities of gender 
and height, we obtain the following estimates: 

 P(t|short) = 1/4 x a = a 

 P(t| medium) = 2/8 x 1/8 = 0.031 
p(t |tall) = 3/3 x 1/3 = 0.333 





Prediction
 Dependent variable  , y

 The variable whose values we want to explain or 
forecast 

 Independent variable , x

 Variable that explains the other

 Linear regression

 assumes a linear relationship between input 
variable and output variable

 Logistic regression

 Used when the dependent variable is binary 

 0/1, T/F, Y/N



Linear Regression

 Objective

 To establish if there is a relationship between two 
variables.

 Income &  spending

 Students’ weight & exam score

 Forecast new observation

 Sales in next quarter



 If the scatter diagram indicates some relationship 
between two variable x and y then the dots of the 
scatter diagram will be concentrated round a curve

 The curve is called the curve of regression and the 
relationship is said to the be expressed by means of 
curvilinear regression

 In the particular case, when the curve is a straight
line, it is called a line of regression and the 
regression is said to be linear. 
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Regression
 For classification the output(s) is nominal

 In regression the output is continuous

 Function Approximation

 Many models could be used – Simplest is 
linear regression

 Fit data with the best hyper-plane which "goes 
through" the points

y
dependent

variable
(output)

x – independent variable (input)



Regression
 For classification the output(s) is nominal

 In regression the output is continuous

 Function Approximation

 Many models could be used – Simplest is 
linear regression

 Fit data with the best hyper-plane which "goes 
through" the points

y
dependent

variable
(output)

x – independent variable (input)



Regression
 For classification the output(s) is nominal

 In regression the output is continuous

 Function Approximation

 Many models could be used – Simplest is linear regression

 Fit data with the best hyper-plane which "goes through" the 
points

 For each point the differences between the predicted point and 
the actual observation is the residue

y

x



Simple Linear Regression
 For now, assume just one (input) independent variable x, 

and one (output) dependent variable y

 Multiple linear regression assumes an input vector x

 Multivariate linear regression assumes an output 
vector y

 We will "fit" the points with a line (i.e. hyper-plane)

 Which line should we use?

 Choose an objective function

 For simple linear regression we choose sum squared 
error (SSE)

 S (predictedi – actuali)
2  =S (residuei)

2

 Thus, find the line which minimizes the sum of the 
squared residues (e.g. least squares)
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 The equation of the line of regression of is y=a+bx

, where y is dependent variable and x is independent 
variable.

 The line of regression always passes through point

( x, y) ,  a=y-bx

b is the slope  of the line r σy
σx

line gives the best estimate

of y given a value of x.

Y=β0 + β1x

Y=4+2x,   for every increase in x, y 
increase 2 times



Regression line

y=a+bx   substitute the values of a  and b

a=y +bx     b =
rσy

σx

where r = cov(x, y) / σxσy

‘a’ is the intercept and ‘b’ is the slope of the line 

Cov (X,Y)= [1/n∑ xy ] – x y

Consumption= 49.13 + (0.85) Income  + error
Every increase in income the consumption will increase 0.85 times



 Calculate the regression line of y on x for the following 

data. Also obtain prediction of y which should 

corresponding on the average to x = 6.2 

Examples

x 1 2 3 4 5 6 7 8 9

y 9 8 10 12 11 13 14 16 15

rxy= cov(x, y)/σx σy               Cov (X,Y)= [1/n∑ xy ] – x y

σx
2 = (1/n Σ X2 )-X2

a=y- bx     b = rσx

σy

y=a+bx substitute the values of a and b



 Linear regression 

 not applicable for most complex problems 

 donot work with non numeric data

 Assume a linear relationship

 The straight line values can be greater than 1 and 
less than 0

 Cannot be used as the probability of occurrence of 
target class



Regression

Simple regression considers the relation between 
a single explanatory variable and response variable
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Multiple regression simultaneously considers the 
influence of multiple explanatory variables on a 
response variable Y

The intent is to look at 
the independent effect 
of each variable.



Regression Modeling

 A simple regression model 
(one independent variable) 
fits a regression line in 2-
dimensional space

 A multiple regression 
model with two 
explanatory variables fits a 
regression plane in 3-
dimensional space



Simple Regression Model
Regression coefficients are estimated by minimizing 
∑residuals2 (i.e., sum of the squared residuals) to 
derive this model:

The standard error of the regression (sY|x) is 
based on the squared residuals:



Multiple Regression Model
Again, estimates for the multiple slope coefficients
are derived by minimizing ∑residuals2 to derive this 
multiple regression model:

Again, the standard error of the regression is 
based on the ∑residuals2:
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Multiple Regression Model
 Intercept α predicts 

where the regression 
plane crosses the Y 
axis

 Slope for variable X1
(β1) predicts the 
change in Y per unit 
X1 holding X2
constant

 The slope for 
variable X2 (β2) 
predicts the change 
in Y per unit X2
holding X1 constant



Multiple Regression Model

A multiple regression 
model with k independent  
variables fits a regression 
“surface” in k + 1 
dimensional space (cannot 
be visualized)



Multiple regression

 Method for analysing a linear relationship 
involving more than two varaibles

 x1,x2,x3…….xn

 Y=a+b1 x1  +b2x2  +b3x3+…….+bnxn

Height
of 
mother

Height 
0f 
father

Height of 
daughter

63 64 58.6

67 65 64.7

64 67 66.3

… … ….

Daughter  Ht= 7.5+0.707mother +0.614 father



Non linear regression

 The difference between linear and 
nonlinear regression models isn’t 
as straightforward as it sounds.

 You’d think that linear equations produce 
straight lines and nonlinear equations model 
curvature.

 Unfortunately, that’s not correct

 Both types of models can fit curves to your 
data—so that’s not the defining characteristic

http://statisticsbyjim.com/glossary/regression-analysis/


Non linear regression
 Linear model  y=a+bx

 Multiple linear regression  y=a+bx1+cx2

 y=a+bx+cx2

 if you take derivative with respect to any parameter
the resultant is 1(constant).


Y= a+bx     dy/da = 1     dy/db=1x

 y=a+bx+cx2 
 dy/da= 1    dy/db= 1x

A regression model is called non linear if the derivative  
of the model depends on one or more parameters.

Y= a+b2x     dy/db=2bx   i.e.the derivative is dependent on ’b’

Non linear by parameter and not ,non linear by independent variable



Logistic regression
 Used when the dependent variable is binary 

 0/1, T/F, Y/N

 Y= a+ f1(x1)+ …….. +fn(xn)

 f1 is the function being used to transform the 
predictor



Logistic regression

 Uses a logistic curve 

p =     e (a+bx)

1+ e (a+bx)

 Logistic curve gives a value between 0 and 1 
so it can be interpreted as the probability of 
class membership

 Log e (p/(1-p) = a+bx

 Dependent variable , Y= a+bx

 p is the probability of being in the class

 (1-p) is the probability that it is not 

dp/db will dependent 
on b, thus logistic 
regression is 
nonlinear regression



Thanks



Logistic Regression
 One commonly used algorithm is Logistic Regression
 Assumes that the dependent (output) variable is 

binary which is often the case in medical and other 
studies. (Does person have disease or not, survive or 
not, accepted or not, etc.)

 Like Quadric, Logistic Regression does a particular 
non-linear transform on the data after which it just 
does linear regression on the transformed data

 Logistic regression fits the data with a 
sigmoidal/logistic curve rather than a line and outputs 
an approximation of the probability of the output 
given the input
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Logistic Regression Example
 Age (X axis, input variable) – Data is fictional

 Heart Failure (Y axis, 1 or 0, output variable)

 Could use value of regression line as a probability approximation
 Extrapolates outside 0-1 and not as good empirically

 Sigmoidal curve to the right gives empirically good probability 
approximation and is bounded between 0 and 1
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Logistic Regression Approach
Learning

1. Transform initial input probabilities into log odds 
(logit)

2. Do a standard linear regression on the logit values

 This effectively fits a logistic curve to the data, while still 
just doing a linear regression with the transformed input 
(ala quadric machine, etc.)

Generalization

1. Find the value for the new input on the logit line

2. Transform that logit value back into a probability
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Non-Linear Pre-Process to 
Logit (Log Odds)

CS 478 - Regression 105

Medication 
Dosage

#
Cured

Total
Patients

Probability:
# Cured/Total 
Patients

20 1 5 .20

30 2 6 .33

40 4 6 .67

50 6 7 .86

0   10   20   30   40   50   
60

Cure
d

Not 
Cured

0   10   20   30   40   50   
60

prob.
Cure
d

0

1



Non-Linear Pre-Process to 
Logit (Log Odds)
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Medication 
Dosage

#
Cured

Total
Patients

Probability:
# Cured/Total 
Patients

20 1 5 .20

30 2 6 .33

40 4 6 .67

50 6 7 .86

0   10   20   30   40   50   
60

Cured

Not 
Cured

0   10   20   30   40   50   
60

prob.
Cure
d

0

1



Logistic Regression Approach

 Could use linear regression with the probability points, but 
that would not extrapolate well

 Logistic version is better but how do we get it?

 Similar to Quadric we do a non-linear pre-process of the 
input and then do linear regression on the transformed 
values – do a linear regression on the log odds - Logit
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Non-Linear Pre-Process to 
Logit (Log Odds)
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Medication 
Dosage

#
Cured

Total
Patients

Probability:
# Cured/Total 
Patients

Odds:
p/(1-p) =
# cured/
# not 
cured

Logit
Log Odds:

ln(Odds)

20 1 5 .20 .25 -1.39

30 2 6 .33 .50 -0.69

40 4 6 .67 2.0 0.69

50 6 7 .86 6.0 1.79

0   10   20   30   40   50   
60

Cure
d

Not 
Cured

0   10   20   30   40   50   
60

prob.
Cure
d

0
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Regression of Log Odds
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Medicatio
n Dosage

#
Cured

Total
Patient
s

Probability:
# 
Cured/Total 
Patients

Odds:
p/(1-p) =
# cured/
# not cured

Log 
Odds:

ln(Odds)

20 1 5 .20 .25 -1.39

30 2 6 .33 .50 -0.69

40 4 6 .67 2.0 0.69

50 6 7 .86 6.0 1.79

0   10   20   30   40   50   
60

+
2

-2

0

• y = .11x – 3.8   - Logit regression equation

• Now we have a regression line for log odds (logit)

• To generalize, we interpolate the log odds value for the new data point

• Then we transform that log odds point to a probability: p = elogit(x)/(1+elogit(x))

• For example assume we want p for dosage = 10

Logit(10) = .11(10) – 3.8 = -2.7

p(10) = e-2.7/(1+e-2.7) = .06    [note that we just work backwards from logit to p]

• These p values make up the sigmoidal regression curve (which we never have to 

actually plot)

prob.
Cured

0

1
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