Basics of Software Testing-1 UNIT I Software Testing

SOFTWARE TESTING

Basics of Software Testing-I

In this chapter, we discuss the following topics:
1. Introduction to Software Testing

. Understanding Error, Fault and Failure

. Software Quality Attributes

. Requirements, Behavior and Correctness

. Correctness Vs Reliability

. Testing and Debugging

I =AW T~ 'S B o)

. Test Metrics
Summary

1. Introduction to Software Testing

1.1 Software: Software is a set of instructions to perform some task.
Software is used in many applications of the real world. Some of the examples are

Application software, such as word
processors Firmware in a embedded system

Middleware, which controls and co-ordinates distributed systems
System software such as operating systems

Video Games
Websites

All of these applications need to run without any error and provide a quality service to the
user of the application. In this regard the software has to be tested for its accurate and
correct working.

1.2 Software Testing:

Testing can be defined in simple words as “Performing Verification and Validation of the
Software Product™ for its correctness and accuracy of working.

Other definitions of Software Testing:

Basics of Software Testing-1 UNIT I Software Testing

Software testing is an investigation conducted to provide stakeholders with information
about the quality of the product or service under test.
Software Testing also ensures whether the software program/application/product:
Meets the business and technical requirements that guided its design and
development,
Works as expected; and
Can be implemented with the same characteristics.

Testing is done manually or using automated tools. Testing is done by a separate group of
Testers. Testing is done right from the beginning of the software development life cycle
till the end; it is delivered to the customer.

1.3 Functional Vs non-functional testing

Functional testing refers to tests that verify a specific action or function of the code.
These are usually found in the code requirements documentation, although some
development methodologies work from use cases or user stories. Functional tests tend to
answer the question of "can the user do this" or "does this particular feature work".

Non-functional testing refers to aspects of the software that may not be related to a
specific function or user action, such as scalability or security. Non-functional testing

tends to answer such questions as "how many people can log in at once”, or "how easy is
it to hack this software".

2. Error, Fault and Failure:

Humans make errors in their thoughts, actions, and in the products that might result from
their actions. Errors occur in the process of writing a program.

A programmer makes an error (mistake), which results in a defect (fault, bug) in the
software source code. If this defect is executed, in certain situations the system will
produce wrong results, causing a failure. Not all defects will necessarily result in failures.
For example, defects in dead code will never result in failures. A defect can turn into a
failure when the environment is changed. Examples of these changes in enviromment
include the software being run on a new hardware platform, alterations in source data or
interacting with different software. A single defect may result in a wide range of failure
symptoins.

Not all software defects are caused by coding errors. One common sowrce of expensive
defects is caused by requirement gaps, e.g., unrecognized requirements that result in
errors of omission by the program designer. A common source of requirements gaps is
non-functional requirements such as testability, scalability, maintainability, usability,
performance, and security.

Basics of Software Testing-1 UNIT I Software Testing

Errors— Examples

Incorrect usage of software by users

Bad architectre and design by architects and
designers Bad programming by developers
Inadequate testing by testers
Wrong build using incorrect configuration items by Build Team Member

Fault - Examples
A fault is the manifestation of one or more errors
An incorrect statement
‘Wrong data type
Wrong mathematical formula in design document
Missing functionality in the system

Failure

A failure occurs when a faulty piece of code is executed leading to incorrect state
that f propagates to the program’s output.

The following figure tells us how Error made by human will result in failure of the
software.

Figure (1) to understand Error, Fault and Failure

Error / Mistake
A human
action that produces \
an incorrect result
Defect/ Bug / Fault

A flaw in a component or system
that can cause the

component or system to fail
to perform its required function

N

Failure Deviation
of the component
or system
from its expected delivery,
service or result

Basics of Software Testing-1 UNIT I Software Testing

Figure (2) to understand Error, Fault and Failure:
Mo] are used by
| Programmer - ha t._,p ifications)}———

_ possibility of hrrur in
wrntes thought or
l' action

may lead to

>

‘\

/

/\

s input to

= — might contain
data Program =

produces

-

()b‘.L v, ubl(‘
hc‘?\ ior

1 ldh to
— =
Observed Desired g
behavior .~ behavior =

/\

determines

are I'_l'lts:_.
S — ﬂi
[l‘l_, same?

Yes. Program behaves as No. Program does not behave
desired. as desired. A failure
has occured.

Finding faults early

It is commonly believed that the earlier a defect is found the cheaper it is to fix it. The
following table shows the cost of fixing the defect depending on the stage it was found.
For example, if a problem in the requirements is found only post-release, then it would

cost 10-100 times more to fix than if it had already been found by the requirements
TeView.

Time Detected

Requirements | Architecture | Construction | System | Post-

Test Release
Time Requirements 1 3% 5-10x 10x 10—
Introduced 100x
Architecture - 1x 10x 15% 25—
100
Construction - - 1x 10x 10-25x%

Basics of Software Testing-1 UNIT I Software Testing

Software Testing Objectives:

Testing is done to fulfill certain objectives

To discuss the distinctions between validation testing and defect testing
To describe the principles of system and component testing

To describe strategies for generating system test cases
To understand the essential characteristics of tool used for test automation
To find or prevent defects
To determine that software products satisfy specified
requirements Ensuring that a system is ready for use

Gaining confidence that it works
Providing information about the level of quality
Determining user acceptability
Software quality measures how well software is designed (quality of design), and
how well the software conforms to that design (quality of conformance).

3. Software quality:

1) Conformance to specification: Quality that is defined as a matter of products and
services whose measurable characteristics satisfy a fixed specification — that is,
conformance to an in beforehand defined specification.

2) Meeting customer needs: Quality that is identified independent of any measurable
characteristics. That is, quality is defined as the products or services capability to
meet customer expectations — explicit or not.

Software quality is a multidimensional quantity and is measurable.

To do this, we need to divide and measwure software quality in terms of quality
attributes:

Static Quality Attributes

Dynamic Quality Attributes

Basics of Software Testing-1 UNIT I Software Testing
The following figure shows the different quality attributes:
Extemal and internal quality
Functionality Reliability Usability Efficiency Maintainability Portability

Suitability Maturity Understandability Time - Analyzability Adaptability
Accuracy Fault tolerance Learnability Behavior Changeability Installability
Interoperability Recoverability Operability Resource - Stability Co-existence
Security Reliability Attractiveness Utilization Testability Reliability
Functionality compliance Usability Efficiency Maintainability Portability
Compliance compliance compliance compliance compliance

Software Testing

Basics of Software Testing-1 UNIT I
Software Quality Attributes:
Structured
Static Maintainable
Attributes
Testable
Documentation
Software
Quality
Dynamic
»| Attributes
Software Quality Attributes:
- Static Attributes:

1. Maintainability and its Sub-characteristics:

Reliability

Correctness

Completeness

Consistency

Usability

Performance

In software engineering, the ease with which a software product can be modified in order

to:
correct defects

meet new requirements

make future maintenance easier, or
cope with a changed environment

These activities are known as software maintenance.

A set of attributes that bear on the effort needed to make specified modifications are:

1.1 Analyzability: Attributes of software that bear on the effort needed for
diagnosis of deficiencies or causes of failures, or for identification of

parts to be modified

1.2 Changeability: Attributes of software that bear on the effort needed
for modification, fault removal or for environmental change

Basics of Software Testing-1 UNIT I Software Testing

1.3 Stability: Attributes of software that bear on the risk of unexpected effect
of modifications

1.4Testability: Attributes of software that bear on the effort needed for
validating the modified software. The degree to which a system or
component facilitates the establishment of test criteria and the
performance of tests to determine whether those criteria are met

Static Testability Ex: Software Complexity
Dynamic Testability Ex: Test Coverage Criteria

Software Quality Attributes:
- Dynamic Attributes:

1. Completeness: The availability of all the features listed in the requirements or in the
user manual.

2. Consistency: adherence to a common set of conventions and assumptions.

2.1 Compliance: Attributes of software that make the software adhere to
application related standards or conventions or regulations in laws and similar
prescriptions

2.2 Conformance : Attributes of software that make the software adhere to
standards or conventions relating to portability.

3. Usability: The ease with which an application can be used. Usability testing also
refers to testing of a product by its potential users

3.1Understandability: Attributes of software that bear on the users' effort
for recognizing the logical concept and its applicability

3.2 Learnability: Attributes of software that bear on the users' effort
for learning its application

3.30perability : Attributes of software that bear on the users' effort for
operation and operation control

4. Performance: The time the application takes to perform a requested task.
Performance is considered as a nonfinctional requirement.

4.1 Time behavior: Attributes of software that bear on response and
processing times and on throughput rates in performances its function

Basics of Software Testing-1 UNIT I Software Testing

4.2 Resource behavior: Attributes of software that bear on the amount
of resource used and the duration of such use in performing its fiunction

5. Reliability: Software Reliability is the probability of failure-free operation of
software over a given time interval and under given conditions

5.1 Maturity: Attributes of software that bear on the frequency of failure by
faults in the software.

5.2 Fault tolerance: Attributes of software that bear on its ability to maintain
a specified level of performance in case of software faults or of

infringement of its specified interface.

5.3 Recoverability: Attributes of software that bear on the capability to re-
establish its level of performance and recover the data directly affected in
case of a failure and on the time and effort needed for it.

For example, the Transmission Control Protocol (TCP) is designed to allow reliable two-
way commumication in a packet-switched network, even in the presence of
communications links which are imperfect or overloaded. It does this by requiring the
endpoints of the communication to expect packet loss, duplication, reordering and
corruption, so that these conditions do not damage data integrity, and only reduce
throughput by a proportional amount.

Data formats may also be designed to degrade gracefully. HTML for example, is
designed to be forward compatible, allowing new HTML entities to be ignored by Web
browsers which do not understand them without causing the document to be unusable.

Recovery from errors in fault-tolerant systems can be characterized as either roll-forward
or roll-back. When the system detects that it has made an error, roll-forward recovery
takes the system state at that time and corrects it, to be able to move forward. Roll-back
recovery reverts the system state back to some earlier, correct version, for example using
check pointing, and moves forward from there.

6. Correctness: The correct operation of an application

6.1 Accurateness: Attributes of software that bear on the provision of right or
agreed results or effects

6.2 Suitability: Attributes of software that bear on the presence
and appropriateness of a set of functions for specified tasks

7. Correctness: It attempts to establish that the program is error- free, testing attempts to
find if there are any errors in it.

Basics of Software Testing-1 UNIT I Software Testing

4. Requirement. Behavior and Correctness:

Requirements specify the "function or characteristic of a system that is necessary for the
quantifiable and verifiable behaviors that a system must possess and constraints that a
system must work within to satisfy an organization's objectives and solve a set of
problems”.

The documented representation of requirement is requirement specification.

The review of requirement specification involves

- Arriving at Team understanding of the Requirements and

- Reviewing Requirements Specification document to determine Quality Attributes

Step 1# Arriving at Team understanding of the Requirements

- Delivering Quality Product means meeting Stake Holders expectations.

- Needs review of requirements and understanding by relevant stake holders on
acceptance

Step2# Review Requirements Specification document to determine Quality Attributes
- Complete: Nothing is missing
- Consistent: Does not conflict with other requirements
- Correct: Accurately states a customer need
- Feasible: Can be implemented within known constraints
- Modifiable: Can be easily changed
- Necessary: Documents something customers really need
- Prioritized: Ranked as to importance of inclusion in product
- Testable: Tests can be devised to demonstrate correct implementation
- Traceable: Linked to system requirements, and to designs, code, and tests

- Unambiguous: Has only one possible meaning

Basics of Software Testing-1 UNIT I Software Testing

Example
Requirements for two different programs:

Requirement 1: It is required to write a program that inputs two integers and outputs the
maximum of these

Requirement 2: It is required to write a program that inputs a sequence of integers and
outputs the sorted version of this sequence

Example of Requirements: Incompleteness

Suppose that program max is developed to satisfy Requirement 1. The expected output of
max when the input integers are 13 and 19 can be easily determined to be 19.

Suppose now that the tester wants to know if the two integers are to be input to the
program on one line followed by a carriage return, or on two separate lines with a
carriage return typed in after each number. The requirement as stated above fails to
provide an answer to this question.

Example of Requirements: Ambiguity

Requirement 2 is ambiguous. It is not clear whether the input sequence is to be sorted in
ascending or in descending order. The behavior of sert program, written to satisfy this
requirement, will depend on the decision taken by the programmer while writing sort.

Input domain (Input space)

The set of all possible inputs to a program P is known as the input domain or input space,
of P.

Using Requirement 1 above we find the input domain of max to be the set of all pairs of
integers where each element in the pair integers is in the range -32,768 till 32,767.

Using Requirement 2 it is not possible to find the input domain for the sort program.
Modified Requirement 2:

It is required to write a program that inputs a sequence of integers and outputs the
integers in this sequence sorted in either ascending or descending order.

The order of the output sequence is determined by an input request character which
should be " A" when an ascending sequence is desired, and "' D" otherwise.

While providing input to the program, the request character is input first followed by the
sequence of integers to be sorted, the sequence is terminated with a period.

Based on the above modified requirement, the input domain for sort is a set of pairs. The
first element of the pair is a character. The second element of the pair is a sequence of
zero or more integers ending with a period.

Basics of Software Testing-1 UNIT I Software Testing

Valid/Invalid Inputs

The modified requirement for sort mentions that the request characters can be A" and
D", but fails to answer the question '"What if the user types a different character 2.

When using sort it is certainly possible for the user to type a character other than A"
and ""D". Any character other than "A" and "'D" is considered as invalid input to sort.
The requirement for sort does not specify what action it should take when an invalid
input is encountered.

5. Correctness Vs Reliability:

The correctness will be established via requirement specification and the program text to
prove that software is behaving as expected.

The reliability is the probability of the successfill execution of program on randomly
selected elements from its input domain.

Though correctness of a program is desirable, it is almost never the objective of testing.

To establish comrectness via testing would imply testing a program on all elements in the
input domain. In most cases that are encountered in practice, this is impossible to
accomplish.

Thus correctness is established via mathematical proofs of programs.

While correctness attempts to establish that the program is error fiee, testing attempts to
find if there are any errors in it.

Thus completeness of testing does not necessarily demonstrate that a program is error
fiee.

6. Testing Vs Debugging:

Testing is the process of determining if a program has any errors.

When testing reveals an error, the process used to determine the cause of this error and to
remove it, is known as debugging.

* Testing catches and reports bugs.
+ Testing reduces the probability of undiscovered bugs remaiming in the software

+ Testing is not a proof of correctness

Basics of Software Testing-1 UNIT I Software Testing

+ Testing can be planned with allocation of effort and schedule, resources, also,
having criteria on when to stop testing.

* Testing starts with known conditions like what to test, test input, expected output
and uses test procedures.

* Testing shows that bugs are present in a program, but cannot prove that there are
no bugs

* There is no need to know design to carry-out testing

* Good testing is done by an outsider that is other than the team who develops the
code

+ Test automation in order to store and execute test cases can be done
* Debugging is the process of analyzing causes behind the bugs and removing them
* Debugging starts with a list of reported bugs with unknown initial conditions.

* In debugging it is not possible to plan and estimate schedule and effort for
debugging

* Debugging is a problem solving involving deduction
* Detailed design knowledge is of great help in good debugging
* Debugging is done by the development team and hence is an insider’s work

* Automation of debugging is not in place

Basics of Software Testing-1 UNIT I Software Testing

The figure shows a test/debug cycle:

—_—
cfij Inpur __
. domain ~

Input
data

r — Use -
Construct Opecrational
I | test input }7, _— profile
: ﬁ Use 1

Test case

Execute —— Test plan
program

&

Bechavior ¥

— —_— Update?
— I

A e) Use Specification
.

Yes R e e —

—— — 1
e Eronn Cause of error to
Iesting to be be determined now?
terminated? - _

Debug the
program

* Execute the program on an empty input sequence.

* Test the program for robustness against erroneous inputs such as “R’” typed in as
the request character.

* All failures of the test program should be recorded in a suitable file using the
Company Failure Report Form.

Software Testing Life Cycle:

Software testing life cycle identifies what test activities to carry out and when (what is
the best time) to accomplish those test activities. Even though testing differs between
organizations, there is a testing life cycle.

Software Testing Life Cycle consists of six (generic) phases:
Test Planning,
Test Analysis,
Test Design,
Construction and verification,

Basics of Software Testing-1 UNIT I Software Testing

Testing Cycles,
Final Testing and Implementation
and Post Implementation.

Software testing has its own life cycle that intersects with every stage of the SDLC. The
basic requirements in software testing life cycle is to control/deal with software testing —
Manual, Automated and Performance.

Test Planning

This is the phase where Project Manager has to decide what things need to be tested, do I
have the appropriate budget etc. Naturally proper planning at this stage would greatly
reduce the risk of low quality software. This planning will be an ongoing process with no
end point.

Activities at this stage would include preparation of high level test plan-(according to
IEEE test plan template The Software Test Plan (STP) is designed to prescribe the scope,
approach, resources, and schedule of all testing activities. The plan must identify the
items to be tested, the features to be tested, the types of testing to be performed, the
personnel responsible for testing, the resources and schedule required to complete testing,
and the risks associated with the plan.). Almost all of the activities done during this stage
are included in this software test plan and revolve around a test plan.

Test Analysis

Once test plan is made and decided upon, next step is to delve little more into the project
and decide what types of testing should be carried out at different stages of SDLC, do we
need or plan to automate, if ves then when the appropriate time to automate is, what type
of specific documentation I need for testing.

Proper and regular meetings should be held between testing teams, project managers, and
development teams, Business Analysts to check the progress of things which will give a
fair idea of the movement of the project and ensure the completeness of the test plan
created in the planning phase, which will further help in enhancing the night testing
strategy created earlier. We will start creating test case formats and test cases itself. In
this stage we need to develop Functional validation matrix based on Business
Requirements to ensure that all system requirements are covered by one or more test
cases, identify which test cases to automate, begin review of documentation, i.c.
Functional Design, Business Requirements, Product Specifications, Product Externals
etc. We also have to define areas for Stress and Performance testing.

Test Design

Test plans and cases which were developed in the analysis phase are revised. Functional
validation matrix is also revised and finalized. In this stage risk assessment criteria is

Basics of Software Testing-1 UNIT I Software Testing

developed. If you have thought of automation, then you have to select which test cases to
automate and begin writing scripts for them. Test data is prepared. Standards for unit
testing and pass / fail criteria are defined here. Schedule for testing is revised (if
necessary) & finalized and test environment is prepared.

Construction and verification

In this phase we have to complete all the test plans, test cases, complete the scripting of
the automated test cases, Stress and Performance testing plans needs to be completed. We
have to support the development team in their unit testing phase. And obviously bug
reporting would be done as when the bugs are found. Integration tests are performed and
errors (if any) are reported.

Testing Cycles

In this phase we have to complete testing cycles until test cases are executed without
errors or a predefined condition is reached. Run test cases --> Report Bugs --> revise test
cases (if needed) --> add new test cases (if needed) --> bug fixing --> retesting (test cycle
2, test cycle 3....).

Final Testing and Implementation

In this we have to execute remaining stress and performance test cases, documentation
for testing is completed / updated, provide and complete different matrices for testing.
Acceptance, load and recovery testing will also be conducted and the application needs to
be verified under production conditions.

Post Implementation

In this phase, the testing process is evaluated and lessons learnt from that testing process
are documented. Line of attack to prevent similar problems in future projects is
identified. Create plans to improve the processes. The recording of new errors and
enhancements is an ongoing process. Cleaning up of test environment is done and test
machines are restored to base lines in this stage.

Example for Test plan
A test cycle is often guided by a test plan.

Example: The sort program is to be tested to meet the requirements given earlier.
Specifically, the following needs to be done.

1. Execute sort on at least two input sequences, one with " A" and the other with '"'D" as
request characters.

Basics of Software Testing-1 UNIT I Software Testing

2. Execute the program on an empty input sequence.

3. Test the program for robustness against erroneous inputs such as “R" typed in as the
request character.

4. All failures of the test program should be recorded in a suitable file using the
Company Failure Report Form..

Test case/data

A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify
compliance with a specific requirement.

A test case 1s a pair consisting of test data to be input to the program and the expected
output. The test data is a set of values, one for each input variable.

A test setis a collection of zero or more test cases.

A test case in software engineering is a set of conditions or variables under which a tester
will determine whether an application or software system is working correctly or not. The
mechanism for determining whether a software program or system has passed or failed
such a test is known as a test oracle. In some settings, an oracle could be a requirement or
use case, while in others it could be a heuristic. It may take many test cases to determine
that a software program or system is functioning correctly. Test cases are often referred
to as test scripts, particularly when written. Written test cases are usually collected into
test suites.

Contents

1 Formal test cases

2 Informal test cases

3 Typical written test case format
4 References

5 Test Case Management Software
6 External links

Formal test cases

In order to fully test that all the requirements of an application are met, there must be at
least two test cases for each requirement: one positive test and one negative test, unless a
requirement has sub-requirements. In that situation, each sub-requirement must have at
least two test cases. Keeping track of the link between the requirement and the test is
frequently done using a traceability matrix. Written test cases should include a

Basics of Software Testing-1 UNIT I Software Testing

description of the functionality to be tested, and the preparation required to enswre that
the test can be conducted.

What characterizes a formal, written test case is that there is a known input and an
expected output, which is worked out before the test is executed. The known input should
test a precondition and the expected output should test a post condition.

Informal test cases

For applications or systems without formal requirements, test cases can be written based
on the accepted normal operation of programs of a similar class. In some schools of
testing, test cases are not written at all but the activities and results are reported after the
tests have been run.

In scenario testing, hypothetical stories are used to help the tester think through a
complex problem or system. These scenarios are usually not written down in any detail.
They can be as simple as a diagram for a testing environment or they could be a
description written in prose. The ideal scenario test is a story that is motivating, credible,
complex, and easy to evaluate. They are usually different from test cases in that test cases
are single steps while scenarios cover a number of steps.

Typical written test case format

A test case 1s usually a single step, or occasionally a sequence of steps, to test the correct
behavior/functionalities, features of an application. An expected result or expected
outcome is usually given.

Additional information that may be included:

test case ID

test case description

test step or order of execution number

related requirement(s)

depth

test category

author

check boxes for whether the test is automatable and has been automated.

Additional fields that may be included and completed when the tests are
executed: pass/fail
remarks

Larger test cases may also contain prerequisite states or steps, and descriptions.

A written test case should also contain a place for the actual result.

Basics of Software Testing-1 UNIT I Software Testing

These steps can be stored in a word processor document, spreadsheet, database or other
common repository.

In a database system, you may also be able to see past test results and who generated the
results and the system configuration used to generate those results. These past results
would usually be stored in a separate table.

Test suites often also contain
Test summary
Configuration

Besides a description of the functionality to be tested, and the preparation required to
ensure that the test can be conducted, the most time consuming part in the test case is
creating the tests and modifying them when the system changes.

Under special circumstances, there could be a need to run the test, produce results, and
then a team of experts would evaluate if the results can be considered as a pass. This
happens often on new products' performance munber determination. The first test is taken
as the base line for subsequent test / product release cycles.

Acceptance tests, which use a variation of a written test case, are commonly performed
by a group of end-users or clients of the system to ensure the developed system meets the
requirements specified or the contract. User acceptance tests are differentiated by the
inclusion of happy path or positive test cases to the almost complete exclusion of
negative test cases. The Sample test cases are discussed below:

Basics of Software Testing-1 UNIT I

Sample test case for sort:

Test data: <"A"” 12 -29 32 >
Expected output: -29 12 32

Test Case 2
Test data: <"“D'" 12 -2932. >
Expected output: 32 12 -29

Test Case 3
Test data: <"A"” >
Expected output: No input to be sorted in ascending order

Test Case 4
Test data: <"“D". >
Expected output: No input to be sorted in descending order

Test Case 5
Test data: <'“R"” 12 -29 32. >

Expected output: Invalid request character; valid characters ‘A’ and ‘D’

Test Case 6

Test data: <“D"’ ¢,17,2 . >

Expected output: Invalid number
* Test Cases 1 and 2 corresponds to Test Plan 1
* Test Case 3 and 4 corresponds to Test Plan 2
* Test Case 5 corresponds to Test Plan 3

Executing the Program for testing it:

Software Testing

Often a Tester might construct a Test Harness to aid in Program execution

Test Harness

In software testing, a test harness or automated test framework is a collection of software
and test data configured to test a program unit by running it under varying conditions and
monitoring its behavior and outputs. It has two main parts: the Test execution engine and

the Test script repository.

Test harnesses allow for the automation of tests. They can call functions with supplied
parameters and print out and compare the results to the desired value. The test harness is
a hook to the developed code, which can be tested using an automation framework.

Basics of Software Testing-1 UNIT I Software Testing

A test harness should allow specific tests to run (this helps in optimizing), orchestrate a
runtime environment, and provide a capability to analyze results.

The typical objectives of a test hamness are to:
Automate the testing process.
Execute test suites of test cases.
Generate associated test reports.
A test harness may provide some of the following benefits:
Increased productivity due to automation of the testing process.

Increased probability that regression testing will occur.
Increased quality of software components and application.

The figure gives an example of Test Harness:

test_setup

‘
get_input print_sequence

check_input report_failure

| I

call_sort , Ccheck_output

The Test Harness Reads an input sequence, checks for its correctness, and then calls sort.
The sorted array sort_sequence returned by sort is printed using print _sequence

The Test Cases are assumed to be in the Test Pool

Assumptions: sort is code as a procedure; the get input procedure reads the request
character and the sequence to be sorted into variables request char, num items, and
in_numbers; the input is checked prior to calling sort by the check_input.

Basics of Software Testing-1 UNIT I Software Testing

The test_setup procedure is invoked first to setup the test data; identifying and opening
the file containing tests;

The check_output procedure serves as the oracle that checks if the program under test
behaves correctly.

The report_failure procedure is invoked in case the output from sort is incorrect.
Program behavior

Can be specified in several ways: plain natural language, a state diagram, formal
mathematical specification, etc.

A state diagram specifies program states and how the program changes its state on an
input sequence.

Program behavior: Example
Consider a menu driven application.

Menu Bar = File Edit Tools Windows

Pulled down .
menu

Basics of Software Testing-1 UNIT I Software Testing

Program behavior: Example

User clicks mouse
on “File™

Start
application

Expecting
user input
s,

Pull-down menu
displayed

User selects
“Open”

TOpen”
highlighted
=,

User releases the
mouse

File names in the
current directory
invisible ina
window %

1: task initiated by the user
s: application state

Behavior: observation and analysis

In the first step one observes the behavior.

In the second step one analyzes the observed behavior to check if it is correct or not. Both
these steps could be quite complex for large commercial programs.

The entity that performs the task of checking the correctness of the observed behavior is
known as an oracle.

Oracle: Example

Input

]

hd

Program under
test

Observed
behavior

Dores the observed behavior
rarchr e expeoected behavior ?

l

Tes or No withh an
explanation ..

Basics of Software Testing-1 UNIT I Software Testing

Oracle: Programs
Oracles can also be programs designed to check the behavior of other programs.
For example, one might use a matrix multiplication program to check if a matrix

inversion program has produced the correct output. In this case, the matrix inversion
program inverts a given matrix A and generates B as the output matrix.

Oracle: Construction

Construction of automated oracles, such as the one to check a matrix multiplication
program or a sort program, requires the determination of input-output relationship.

In general, the construction of automated oracles is a complex undertaking.

Oracle construction: Example

HVideo —]
Input Generator ! Database

HVideo Oracle f—'

Test Metrics

Quantitative measurement determining the extent to which a software process, product or
project possesses a certain
attribute (used for tracking purposes)

Goal for the metric is to quantify the progress of the product toward a specified quality
objective

Basics of Software Testing-1 UNIT I Software Testing

Process Metrics:
feedback to improve
the process,
productivity

/ \ Product Metrics

Project Metrics used to track
used to track quality of product
project progress (Static, Dynamic)

Organizational Metrics

Metrics at organizational level are useful in project planning and management.
Examples:

- Defects per thousand lines of code (defects/KLOC)

- Testing cost per KLOC

- Actual schedule of system testing

- Delivery schedule slippage

Project Metrics

Project Metrics relates to a specific project. Useful in the monitoring and control of the
project

Examples:
- The ratio of actual to expected system test effort

- Ratio of number of successful tests to the total number of tests.

Basics of Software Testing-I UNIT I Software Testing

Process Metrics
Every project uses the process. The goal of Process Metrics to measure the goodness of the process

Examples:
- The number of errors found in different testing phases

Product Metrics
Product metrics are useful in making decisions related to the product. For example should the product be released to the client?
Examples:

- Cyclomatic complexity:

V(G)=E -N+2p

* V(G) is the complexity of the control flow graph. E is the edges, N nodes, p the connected procedures

Introduction

Importance of testing in SDLC
Testing life cycle

Test planning

Types of testing

Verification & Validation
Quality Assurance & Control
Bug reporting

Topics
What is Software ?
Types of Software
What is Software testing ?
Why Software Testing ?

Who should Test ?

Software is a set of instruction to perform some task

Application software, such as word processors

Firmware in a embedded system(permanent software
programmed into a read-only memory)

Middleware, it acts as a bridge between an
operating system or database and applications,
especially on a network.

System software such as operating systems
Video Games
Websites

Software testing 1s a process used to identify the
correctness, completeness and quality of developed
computer software.

It 1s the process of executing a program /
application under positive and negative conditions
PP P g

by manual or automated means. It checks for the :-
% Specification

“* Functionality

** Performance

*Disney had done a deal with Compaq Computers to ship
the Lion King Game pre-mnstalled on a million Compaq
Computers destined as Christmas presents for children

everywhere across the country(The Wall Street Journal published
a feature article about Disney spoiling Christmas for children
everywhere as the much anticipated Disney Lion King game blu-

screened on computers across the country Christmas morning)

*Software Testing is important as it may cause mission
fatlure, tmpact on operational performance and reliability 1f
not done propetly.

*Effective software testing delivers quality software products
satisfying uset’s requirements, needs and expectations.

...1s an ’JERROR”*??
....1s a "Bug”??

....1s Fault, Failure ??

A person makes an Error
That creates a fault in software
That can cause a failure in operation

Error : An error is a human action that produces the incorrect result that
results in a fault.

Bug : The presence of error at the time of execution of the software.
Fault : State of software caused by an error.

Failure : Deviation of the software from its expected result. It is an event.

Software Tester is the one who performs testing and
find bugs, if they exist in the tested application.

When to Start Testing in
SDLC

* Requirement *
Analysis

* Design*

Coding °

Testing

* Implementation ®
Maintenance

“ Testing starts from Requirement Phase

Testing Lgfe Cycle

‘l Project Initiation |

L - _
ISystem Studyl I 231838809 4 eportsl

/ | Analysis |
I Test Plan |‘ 1‘
\ ﬂRegression Testl‘

ﬂDesign Test Casesﬂ

pE.

Execute Test Cases
(manual /automated)

‘l Report Defects H

Program Manager-

The planning and execution of the project to ensure the success

of a project minimizing risk throughout the lifetime of the project.
Responsible for writing the product specification, managing the schedule and
making the critical decisions and trade-offs.

QA Lead-

Coach and mentor other team members to help improve QA effectiveness
Work with other department representatives to collaborate on

joint projects and mitiatives

Implement industry best practices related to testing automation and to
streamline the QA Department.

Test Analyst\Lead-
* Responsible for planning, developing and executing automated test
systems, manual test plans and regressions test plans.
* Identifying the Target Test Items to be evaluated by the test effort
* Defining the appropriate tests required and any associated Test
Data
* Gathering and managing the Test Data
* Evaluating the outcome of each test cycle

Test Engineer-
* Writing and executing test cases and Reporting defects
* Test engineers are also responsible for determining the best way a
test can be performed in order to achieve 100% test coverage of all
components

A test plan is a systematic approach to testing a
system 1.e. software. The plan typically contains a
detailed understanding of what the eventual testing
workflow will be.

A test case is a specific procedure of

testing a particular requirement.

It will include:

Identification of specific
requirement tested

Test case success/failure criteria
Specific steps to execute test
Test Data

[

Lo

&

Test each module individually.

Follows a white box testing (Logic of the
program)

Done by Developers

After completing the unit testing and
dependent modules development,
programmers connect the modules with
respect to HLD for Integration Testing
through below approaches.

After completing Unit and Integration testing
through white box testing techniques development
team release an .exe build (all integrated module) to
perform black box testing.

Usability Testing
Functional Testing
Performance Testing
Security Testing

During this test, testing team concentrates on the user friendliness of
build interface. It consists of following sub tests.

User Interface Test: Ease of use (screens should be understandable
to operate by End User)

Look & Feel :- attractive
Speed in interface :- Less number of task to complete task

Manual Support Test :- Context sensitiveness of user manual.

The process of checking the
behavior of the application.

It 1s geared to functional
requirements of an application.

To check the correctness of
outputs.

Data validation and Integration
L.e. Inputs are correct or not.

LOAD TESTING — Also Known as Scalability Testing. During this
test, test engineers execute application build under customer expected
conﬁgurauon and load to estimate performance.

STRESS TESTING — During this test, Test engineers estimates the
peak load. To tind out the maximum number of users for execution of
out application user customer expected configuration to estimate peak

load.
PEAK LOAD > CUSTOMER LOAD (EXPECTED)

DATA VOLUME TESING -- Testing team conducts this test to find
the maximum limit of data volume of your application.

Testing how well the system protects
against unauthorized internal or
external access, willful damage, etc,
may require sophisticated testing
techniques

‘Smoke Testing’ is came from the
hardware testing, in the hardware
testing initial pass is done to check if
it did not catch the fire or smoked in
the initial switch on

19

(8]

The application 1s tested by the users who doesn’t know
about the application.

Done at developer’s site under controlled conditions

Under the supervision of the developers.

A formal test conducted to determine whether or not a system
satisfies its acceptance criteria and to enable the customer to
determine whether or not to accept the system.

It 1s the final test action before deploying the software. The
goal of acceptance testing is to verify that the software is ready
and can be used by the end user to perform the functions for
which the software was built.

1o

This Testing 1s done before the final
release of the software to end-users.

Before the final release of the software
s released to users for testing where
there will be no controlled conditions
and the user here 1s free enough to do
what ever he wants to do on the system
to find errors.

Testing with the intent of determining
if bug fixes have been successful and
have not created any new problems.
Also, this type of testing 1s done to
ensure that no degradation of baseline
functionality has occurred.

Testing the application randomly like hitting
keys irregularly and try to breakdown the
system there is no specific test cases and
scenarios for monkey testing.

Black Box v/s White Box

Black Box Testing is a software testing method in which the internal
structure/ design/ implementation of the item being tested is not known to
the tester. Tester is mainly concerned with the validation of output rather
than how the output is produced(functionality of the item under test is not
important from tester's pov).

White Box Testing is a software testing method in which the internal
structure/ design/ implementation of the item being tested is known to the
tester. tester validates the internal structure of the item under
consideration along with the output.

Programming knowledge and implementation knowledge (internal
structure and working) is required in White Box testing, which is not
necessary in Black Box testing.

Black box testing is done by the professional testing team and can be
done without knowledge of internal coding of the item. White Box
testing is generally done by the programmers who have developed the
item or the programmers who have an understanding of the item's
internals

Correctness can be defined as the support to the specifications
that determine how users can interact with the software and how
the software should behave when it is used correctly.

If the software behaves incorrectly, it might take considerable
amount of time to achieve the task or sometimes it is impossible
to achieve it.

Important rules:

Defining the problem completely.

Develop the algorithm and then the program logic.

Reuse the proved models as much as possible.

Prove the correctness of algorithms during the design phase.

Developers should pay attention to the clarity and simplicity of
your program.

Verifying each part of a program as soon as it is developed.

Reliability refers to the consistency of a measure.
A test is considered reliable if we get the same
result repeatedly.

Software Reliability is the probability of failure-
free software operation for a specified period of
time in a specified environment.

Software reliability is a key part in software quality.
The study of software reliability can be categorized
into three parts:

1. Modeling
2. Measurement
3. Improvement

Reliability testing is done to test the software performance
under the given conditions.

. To find the structure of repeating failures.

. To find the number of failures occurring is the specified
amount of time.

. To discover the main cause of failure

. To conduct performance testing of various modules of
software application after fixing defect

After the release of the product too, we can minimize the
possibility of occurrence of defects and thereby improve
the software reliability.

The correctness will be established via requirement specification
and the program text to prove that software is behaving as
expected.

The reliability is the probability of the successful execution of
program on randomly selected elements from its input domain.

Though correctness of a program is desirable, it is almost never the
objective of testing.

While correciness attempts to establish that the program is error
free, testing attempts to find if there are any errors in it.

Thus completeness of testing does not necessarily demonstrate
that a program is error free.

Testing VsDebugging

Testing is the process of determining if a program has any
errors.

When testing reveals an error, the process used to determine
the cause of this error and to remove it, is known as debugging.

Testing catches and reports bugs.

Testing reduces the probability of undiscovered bugs
remaining in the software

Testing is not a proof of correctness

Testing can be planned with allocation of effort and schedule,
resources, also, having criteria on when to stop testing.

Testing starts with known conditions like what to test, test
input, expected output and uses test procedures.

Testing shows that bugs are present in a program, but cannot
prove that there are no bugs

There is no need to know design to carry-out testing

Good testing is done by an outsider that is other than the
team who develops the code

Test automation in order to store and execute test cases can
be done

Debugging is the process of analyzing causes behind the
bugs and removing them

Debugging starts with a list of reported bugs with unknown
initial conditions.

In debugging it is not possible to plan and estimate schedule
and effort for debugging

Debugging is a problem solving involving deduction
Detailed design knowledge is of great help in good
debugging

Debugging is done by the development team and hence is an
insider’s work

(The Seven Key Principles)

1.Testing shows presence of Defects
2.Exhaustive Testing is Impossible!
3.Early Testing

4 Defect Clustering

5.The Pesticide Paradox

6.Testing is Context Dependent
/.Absence of Errors Fallacy

1.Testing shows the presence of Defects

We test to find Faults (as known as
Defects)

 As we find more defects, the probability
of undiscovered defects remaining in a
system reduces (decreasing nature).

* However Testing cannot prove that
there are no defects present

Why Testing is necessary

Testing Pearls of Wisdom

* “The probability of the existence of more errors in a
section of a program is proportional to the number of
errors already found in that program”

* “Do not plan a test effort under the tacit assumption that
no errors will be found”

» “A good test is one that has a high probability of detecting
an as yet undiscovered error”

» “A successful test is one that detects an as-yet
undiscovered error”

Myers 2004

2.Exhaustive Testing is Impossible!

* We have learned that we cannot test
everything (i.e. all combinations of
Inputs and pre-conditions).

 That is we must Prioritise our testing
effort using a Risk Based Approach.

Why don’t we test everything ?

System has 20 screens
Average 4 menus / screen
Average 3 options / menu
Average of 10 fields / screen
2 types of input per field
Around 100 possible values

Approximate total for exhaustive testing
20x4x 3 x10x 2 x 100 = 480,000 tests

Test length = 1 sec then test duration = 17.7 days
Test length = 10 sec then test duration = 34 weeks
Test length = 1 min then test duration = 4 years
Test length = 10 mins then test duration = 40 years!

It is not a matter of time. But,time is money (salary is taken
by hour. So second is valuable for software houses)

Urgency of Equilibrium

* If you test too little, the
probability of software
failure increases

 If you try to test too
much, the
development cost
becomes unaffordable

« So,we need to
conduct some sort of
equilibrium

F 3

<+ SWpEQ

Number of
Missed Bugs

Testing
Equilibriu

Under
Testing

Cost of
Testing

Over
Testing

Amount of Testing

3.Early testing

* Testing activities should start
as early as possible in the
development life cycle

* These activities should be
focused on defined objectives
— outlined in the Test Strategy

« Remember from our Definition
of Testing, that Testing doesn’t
start once the code has been
written!

Cost of Fault Correction

100
90 1
801
70
Relative 60 1
Multiples ig 1
30 1
20+
10 ﬁ
0 4

Reqs Des Code Unit J Accept Use

4.Defect Clustering

» Defects are not evenly distributed in a system They are
‘clustered’

* In other words, most defects found during testing are
usually confined to a small number of modules (80% of
uncovered errors focused in 20% modules of the whole

application)

« Similarly, most operational failures of a system are usually
confined to a small number of modules

« An important consideration in test prioritisation!

5.The Pesticide Paradox

Testing identifies bugs, and programmers
respond to fix them

As bugs are eliminated by the programmers, the
software improves

As software improves the effectiveness of

previous tests, gradually destroy

Therefore we must learn, create and use new
tests based on new techniques to catch new
bugs (i.e. Itis not a matter of repetition. It is a
matter of learning and improving)

N.B It's called the "pesticide paradox" after the agricultural phenomenon, where bugs such as the boll
weevil build up tolerance to pesticides, leaving you with the choice of ever-more powerful pesticides
followed by ever-more powerful bugs or an altogether different approach.’ — Beizer 1995

6.Testing is Context (background)Dependent

* Testing is done differently in different contexts

» For example, safety-critical software is tested differently
from an e-commerce site

* Testing can be 50% of development costs, in NASA's
Apollo program (it was 80% testing)

« 3to 10 failures per thousand lines of code (KLOC)
typical for commercial software

* 1 to 3 failures per KLOC typical for industrial software
* 0.01 failures per KLOC for NASA Shuttle code!

 Also different industries impose different testing
standards

7.Absence of Errors Fallacy

« If we build a system and, in doing so, find
and fix defects

It doesn’t make it a good system

« Even after defects have been resolved, it
may still be unusable and/or does not fulfil
the users’ needs and expectations

Metrics can be defined as “STANDARDS OF MEASUREMENT?”.

* |n other words, metrics helps estimating the progress, quality
and health of a software testing effort. The ideal example to
understand metrics would be a weekly mileage of a car
compared to its ideal mileage recommended by the
manufacturer.

Test metrics example:

 How many defects are existed within
the module?

 How many test cases are executed
per person?

 What is the Test coverage %?

"Software testing metrics - Improves the efficiency and
effectiveness of a software testing process."

"We cannot improve what we cannot measure" and
Test Metrics helps us to do exactly the same.

Take decision for next phase of activities
Evidence of the claim or prediction

Understand the type of improvement required
Take decision or process or technology change

Process Product Project

Metrics MNMletrics Metrics

*Process Metrics: It can be used to improve the process efficiency
of the SDLC

*Product Metrics: It deals with the quality of the software product
*Project Metrics: It can be used to measure the efficiency of a
project team or any tools being used by the team members

Analysis-

* |dentification of the Metrics

» Define the identified Metrics

Communicate-

» Explain the need for metric to stakeholder and testing team

» Educate the testing team about the data points need to be
captured for processing the metric

Evaluation-

» Capture and verify the data

» (Calculating the metrics value using the data captured

Report-

» Develop the report with effective conclusion

» Distribute report to the stakeholder and respective representative
» Take feedback from stakeholder

Steps to test metrics

|dentify the key software testing processes to be
measured

The number of test cases planned to be executed per
day

The actual test execution per day will be captured by the
test manager at the end of the day

The actual test cases executed per day

The test case execution falls below the goal set, we need
to investigate the reason and suggest the improvement
measures

« Percentage test cases executed= (No of test
cases executed / Total no of test cases

written) X 100

 Likewise, you can calculate for other
parameters like test cases not executed,
test cases passed, test cases failed, test
cases blocked, etc.

Terification

= Verification is the process confirming
that -software meets its specification, done
through inspections and walkthroughs

Use— To identify defects in the
product early in the life cycle

Talidation

® Validation is the process confirming
that it meets the user’s requirements. It
is the actual testing.

Verification : Is tlPeroduct
Right

Validation :Is it thitight
Product

Quality is defined as meeting the customer’s requirements and
according to the standards

The best measure of Quality is given by FURPS
= Functionality
= Usability
= Reliability
= Performance

= Scalability

+Quality is the important factor
affecting an organization’s long term
performance.

< Quality improves productivity and
competitiveness in any organization.

Quality Assurance is a planned and
systematic set of activities necessary to
provide adequate confidence that
products and services will conform to
spectfied requirements and meets user
needs.

*It is process oriented.
*Defect prevention based.
*Throughout the Life Cycle.

*[t’s a management process.

Quality control 1s the process
by which product quality is
compared with the applicable
standards and the action
taken when non
conformance is detected.

It 1s product ortented

Defect detection based

Quality Assurance makes sure
that we are doing the right things,
the right Way.

QA focuses on bullding m quality
and hence preventing defects

QA dedls with process

QA 1s for enfire hfe cycle.

QA s preventve process.

Quality Control makes sure the
results of what we've done and
what we expected.

QC focuses on testng for quality
and hence detecting defects.

QC dedls with product.

QC 1s for testing part in SDLC.

QC s corrective process

