
DISTRIBUTED

SYSTEM

MANAGEMENT

RESOURCE

MANAGEMENT

RESOURCE MANAGEMENT
 Every distributed system consists of a number of resources

(physical or logical) interconnected by a network and there

are multitude of processes competing to use these

resources

 To ensure that there are no long waits by a user process in

accessing a particular resource, a Distributed System in

general has replication of resources connected to different

nodes of the system

 In order to improve performance of the Distributed System

as whole, there are two ways this can be achieved

 i.e., either move the resource to point near to the process or

move the process to the node having the resource

 Besides providing communication facilities, the network

facilitates resource sharing by migrating a local processes and

executing it at a remote node of the network, in order to improve

the performance

 In practice resource manager function can be either

centralized or distributed in such a manner that each

manage certain group of nodes and a set of resources

 The resource manager performs its function in a

manner that ensures optimization of the

 usage of resources,

 response time,

 network traffic,

 scheduling overhead

 Process migration overhead and

 overall performance of the Distributed System

RESOURCE MANAGEMENT (CONT’D)

RESOURCE MANAGEMENT
 These scheduling techniques can be broadly classified

into three types:

 Task assignment approach: in which each process submitted
by a user is viewed as a collection of related tasks and these
tasks are scheduled to suitable nodes so as to improve
performance

 Load balancing approach: in which all the processes
submitted by the users are distributed among the nodes of
the system so as to equalize the work load among the nodes

 Load sharing approach: which simply attempts to conserve
the ability of system to perform work by assuring that no
node is idle while processes wait for being processed at
other nodes

 The task assignment approach has limited applicability in
practical situations because it works on the assumption
that the characteristics of all the processes to be
scheduled are known in advance

DESIRABLE FEATURES OF

SCHEDULING ALGORITHM

1. No a priori knowledge about the processes

2. Dynamic in nature

3. Quick decision making capability

4. Balanced system performance and scheduling

overhead

5. Stability

6. Scalability

7. Fault tolerance

8. Fairness of service

TASK

ASSIGNMENT

APPROACH

TASK ASSIGNMENT APPROACH

 In this approach, a process is considered to be composed
of multiple tasks and goal is to find an optimal assignment
for tasks of an individual process

 Typical assumptions found in task assignment work are as
follows

 Process has already been split into pieces called tasks

 Amount of computation required by each task & speed of each
processor are known

 The cost of processing each task on every node is known

 Inter process communication (IPC) costs between every pair
of tasks is known

 The IPC cost is considered to be zero (negligible) for tasks
assigned to the same node

 The IPC cost are usually estimated by an analysis of the static
program of a process

 For example if two tasks communicate n times and if the

average time for each intertask communication is t, the

intertask communication cost for the two tasks is n x t

 Other constraints such as resource requirements of the tasks

and the available resources at each node, precedence

relationships among tasks and so on, are also known

 Reassignment of tasks is generally not possible

TASK ASSIGNMENT APPROACH

(CONT’D)

TASK ASSIGNMENT APPROACH

(CONT’D)

 With these assumptions, the task assignment algorithms

seek to assign the tasks of a process to the nodes of the

distributed system in such a manner so as to achieve goals

such as the following

 Minimization of IPC costs

 Quick turnaround time for the complete process

 High degree of parallelism

 Efficient utilization of system resources in general

 These goals often conflict with each other, e.g., while

minimizing IPC tends to assign all the tasks of a process to

a single node, efficient utilization of system resources

tries to distribute the tasks evenly among the nodes

AN EXAMPLE

 Similarly, while quick turnaround time and a high

degree of parallelism encourage parallel execution of

the tasks, the precedence relationship among tasks

limits their parallel execution

 All the required resources may not be available at all

the nodes of the system

 Let us consider an example

 Involves only two assignment parameters – the task

execution cost and inter-task communication cost

 The system consists of six tasks (t1, t2, t3, t4, t5, t6) and

two nodes (n1, n2)

Execution costs

Nodes
n1 n2

Tasks

105t1
t2

t3

t4

t5

2

4 4

6 3

5 2

4∞

∞

t6

11

Inter-task communications cost

t1

t2

t3

t4

t5

t6

t1 t2 t3 t4 t5
12

12

0

6

4

6 4 0

0

0

0

0

0

0

0

0

0000

0

0

5

11

3128

8

12

3

0

0

0

0

5

t6

a)

b)

 Note that assignment is aimed at minimizing the total

execution cost

Serial assignment

Task node

t1

t2

t3

t4
t5

t6

n1

n1

n1

n2

n2

n2

Optimal assignment

Task node

t1

t2

t3

t5

t4

t6

n1

n2

n1

n1

n1

n1

c)

d)

AN EXAMPLE

 Serial assignment execution cost

t11 + t21 + t31 + t42+ t52+ t62 = 5+2+4+3+2+4 = 20

 Serial assignment communication cost

c14 + c15 + c16 + c24 + c25 + c26+ c34+ c35+ c36

=0+0+12+12+3+0+0+11+0 = 38

 Serial assignment total cost = 20+38 = 58

 Optimal assignment execution cost

t11 + t21 + t31 + t41+ t51+ t62 = 5+2+4+6+5+4 = 26

 Optimal assignment communication cost

c16 + c26 + c36 + c46 + c56 = 12 +0+0+0+0 = 12

 Optimal assignment total cost = 26+12 = 38

AN EXAMPLE

 If we take the execution and communication cost comes

out be 58

 Fig d) shows an optimal assignment of tasks to two nodes

that minimizes the total execution and communication

cost, though execution cost is more the total cost is only

38

 Drawbacks

 Characteristics of all processes should be known in

advance

 Does not take care of dynamically changing state

 A priori estimation of characteristics of the processes are

based on static conditions and may be on different

hardware

TASK ASSIGNMENT APPROACH

(CONT’D)

OPTIMAL ASSIGNMENT USING MINIMAL CUTSET

t1

t2 t6

n2

t3

t5

t4

n1

5

4
6

12

8

12

4

3

2
5

3

6

4

5

2
4

10

11

Minimum cost cut

∞

∞

LOAD

BALANCING

LOAD BALANCING APPROACH

 A load balancing algorithm tries to balance the total

system load by transparently transferring the workload

from heavily loaded nodes to lightly loaded nodes to

maximize the total system throughput

 While considering the performance from the user point of

view the metric involved is often the response time of the

processes

 The basic goal of almost all the load balancing algorithms

is to maximize total system throughput

A TAXONOMY OF LOAD BALANCING

ALGORITHMS

Static Dynamic

Deterministic Probabilistic
Centralized Distributed

Cooperative Non -
cooperative

Load
Balancing
Algorithms

 At the highest level we distinguish between Static and

Dynamic load balancing algorithms

 Static

 Use only average behavior of system, ignoring current

state of the system

 System Decisions are hard-coded into an algorithm with

a priori knowledge of system

 These algorithms are simpler because, there is no need

to maintain and process system state information

 However, the potential of static algorithms is limited as

the algorithms do not respond to current system state

STATIC VS DYNAMIC

STATIC VS DYNAMIC

 Dynamic

 Advantage of dynamic systems is that they react to

the system state that changes dynamically and so

are able to avoid those states with unnecessarily

poor performance

 Have greater performance benefits than static

policies

 Since they need to collect and react to system state

information, they are necessarily more complex

than static algorithms

STATIC ALGORITHMS
 Static load-balancing algorithms may be either

deterministic or probabilistic

 Deterministic

 Deterministic algorithms use information about the

properties of the nodes and the characteristics of the

processes to be scheduled to deterministically allocate

processes to nodes. e.g. Task assignment approach belong to

this category of deterministic static algorithm

 Probabilistic

 Probabilistic algorithm uses information regarding static

attributes of the system such as number of nodes, processing

capability of each node, network topology etc to allocate

nodes to processes

 In general the deterministic approach is difficult to

optimize and costs more to implement

DYNAMIC ALGORITHMS
 Dynamic scheduling algorithms may be centralized or

distributed

 Centralized

 The single node, known as centralized server node collects
system state information and is responsible for all scheduling
decisions

 This approach is efficient in process assignment decisions as it
knows both load at each node and number of processes
requiring service

 Other nodes periodically send status update information to
the central node and they are used to maintain the state
information up to date

 One of the problems with centralized mechanism is that of
reliability(single-point-of-failure)

 A typical solution to overcome this problem would be to
replicate the server on K+1 nodes

 In this model cost of maintaining k+1 replicas of server

consistent can be considerably high

 Another approach is, instead of maintaining k+1 server

replicas, a single server is maintained and there are k

entities monitoring the server to detect its failure

 When failure is detected, a new instance of the server is

brought up, which reconstructs its state information by

sending a multicast messages requesting immediate state

information

DYNAMIC ALGORITHMS (CONT’D)

 Distributed

 The distributed scheme does not limit the scheduling

intelligence to one node

 In dynamic distributed scheduling algorithm, the work involved

in making process assignment decisions is physically distributed

among the various nodes of the system

 Uses k physically distributed entities that work as local

controller, where each is responsible for making scheduling

decisions for processes of a predetermined set of nodes

 Each local controller makes decisions based on system wide

objective function, rather than on a local one

 In a fully distributed system each node acts as local controller

making scheduling decisions for processes of its own node,

which includes both transfer of local processes and acceptance

of remote processes

DYNAMIC ALGORITHMS (CONT’D)

 Non-cooperative

 Individual entities act as autonomous entities and make

scheduling decision independently of the actions of other

entities

 Less stable

 Cooperative

 Distributed entities cooperate with each other to make

scheduling decision

 More complex and involve larger overhead

 But more stable when compared to non-cooperative

algorithms

DISTRIBUTED ALGORITHMS (CONT’D)

ISSUES IN DESIGNING LOAD BALANCING

ALGORITHM

 All processes are distributed among nodes of the
system to equalize workload among nodes but
designing a distributed dynamic load balancing
algorithm is a difficult task

 Design Issues

 Load estimation policy: determines the work load of a
particular node of the system

 Process transfer policy: determines whether to execute
locally or remotely

 State information exchange policy: determines how to
exchange the system load information among the nodes

 Location policy: determines to which node a process
selected for transfer should be sent

 Priority assignment policy: determines the

priority of execution of local and remote

processes at a particular node

 Migration limitation policy: determines the

total number of times a process can migrate

from one node to another

Load Estimation Policy

 The main goal of load-balancing algorithms is to balance
the workload on all the nodes of the system

 How to estimate the workload of a particular node in the
system?

1. LOAD ESTIMATION POLICY

LOAD ESTIMATION POLICY
(CONT’D)
 Several load balancing algorithms use total no of processes

present on the node as a measure of the node’s workload

 Above method is not suitable because of existence of daemon
processes

 Other way is, estimate the remaining CPU service time of the
processes

 CPU utilization measured by observing CPU state

 A better estimate is the CPU utilization of the nodes: it is
defined as the number of CPU cycles actually executed per unit
of real time

PROCESS TRANSFER POLICY
 The strategy of load balancing is based on the concept of

moving some of the processes from a heavily loaded nodes
to lightly loaded nodes

 Most of the algorithms use Threshold policy: and its value
is limiting value of a nodes workload whether lightly or
heavily loaded

 It can be determined by one of following methods

 Static policy

 Each node has a predefined threshold value depending on its
processing capability and does not change dynamically

 The main advantage of the method is that no exchange of
state information among the nodes is required for deciding the
threshold value.

 Dynamic policy

 Threshold value calculated as a product of average
workload of all nodes.

 Only 1 or 2 processes must be transmitted.

 Incoming remote processes must not effect local
processes.

 To reduce the instability of single threshold double
threshold policy was proposed called high-low
policy

 It uses two threshold values the high mark and low
mark based on which the possible load states are
divided into three states as

 Overloaded : above the high mark

 Normal: between the high and low mark

 Underloaded: below both marks

PROCESS TRANSFER POLICY
(CONT’D)

PROCESS TRANSFER POLICY
(CONT’D)

Overloaded

Under loaded

Threshold

Single-threshold

policy

Overloaded

Normal

Under loaded

Low mark

High

mark

Double-threshold

policy

 Depending on the current load status of the
node, the decision to transfer a local process
or accept a remote process is based on the
following policies

 When the load of the node is in overload region, new
local procedures are sent to be run remotely and
requests to accept remote processes are rejected

 When the load of node is normal region, new local
procedure run locally and request to accept remote
processes are rejected

 When the load of the node is in the underloaded
region, new local processes are run locally and
requests to accept remote processes are accepted

LOCATION POLICY
 Once the decision is taken to transfer a process from

a node, the next is to select the destination node

 Random

 Destination nodes selected randomly to check whether
node is able to receive the process

 If yes then transfer the process, else another node is
selected randomly

 This continues until a static probe limit Lp is reached,
else process is executed at originating node

 Shortest

 Lp distinct nodes are chosen at random & polled to
determine its load

 Process is transferred to node having minimum load unless
its workload value prohibits to accept the process

 If none of polled nodes can accept process, it is executed
at originating node

 Once a destination node is decided, and the process is
transferred, it must execute the process regardless of its
state at the time the process actually arrives

 A simple improvement to the shortest policy is to
discontinue probing whenever a node with zero load is
encountered

 It was observed that shortest policy uses more state
information and hence more complex, but does not show
much performance improvement over threshold policy

LOCATION POLICY (CONT’D)

 Bidding

 In this method the system is turned into a distributed

computational economy with buyers and sellers of service

 Each node can act as manager (send process) and contractor

(receive process)

 Note that a single node takes on both these roles and no node

is strictly managers or contractors alone under different

conditions

 To select a node for its process managers broadcast request

for bid, contractors respond with bids (prices based on

capacity of the contractor node) and manager selects the

best offer which may the cheapest, fastest or best price-

performance, based on the application

 Once the best bid is determined, winning contractor is

notified and asked if it accepts bid or not

LOCATION POLICY (CONT’D)

 The contractor may have bid for many requests and thus

become overloaded and hence reject the acceptance

message

 If bid is rejected, bidding is started again

LOCATION POLICY (CONT’D)

 Pairing

 The method of pairing policy is to reduce the variance of

loads only between pairs of nodes of the system

 Two nodes that differ greatly in load are temporarily paired

with each other and the load balancing is carried out

between the two nodes by migrating one or more processes

from the more heavily loaded node to the other

 After the formation of the pair, one or more processes are

migrated from heavily loaded node of the two nodes to the

other node to balance the load between these two nodes

 The processes to be migrated are selected by comparing their

expected time to complete on their current node with the

expected time to complete on its partner and migration delay

is included in the estimate

 The pair is broken as soon as the migration is over

STATE INFORMATION EXCHANGE

POLICY

 We have seen that dynamic policies require frequent

exchange of state information among the nodes of

the system

 How to exchange load information among nodes?

 Periodic broadcast

 Each node broadcasts its state information after the

elapse of every T units of time

 This method is not good, as it generates heavy network

traffic and unwanted messages from nodes whose state

has not changed in the last T time units

 Poor scalability

STATE INFORMATION EXCHANGE
POLICY
 Broadcast when state changes

 Avoids fruitless messages by broadcasting state information

only on arrival or departure of a process or change of state

 A further improvement in this method can be obtained by

observing that it is not necessary to report all minor change

in the state of a node to all other nodes, because it can

participate in the load balancing process, only when either

underloaded or overloaded called on-demand exchange.

 On-demand exchange

 In this method a node broadcasts a

StateInformationRequest message when its state

changes to either underloaded or overloaded state

 On receiving the StateInformationRequest message,

other nodes send their current state to the requesting

node

 This can be further refined as only those nodes need to

reply that can co-operate with it in load balancing

process

 i.e., if the requesting node is underloaded, only

overloaded nodes can cooperate with it in the load

balancing process and vice versa

STATE INFORMATION EXCHANGE
POLICY

 Exchange by polling

 All the above methods use broadcasting due to which their

scalability is poor

 The polling mechanism is based on the idea that there is no

need for a node to exchange its state information with all

other nodes in the system

 Hence state information is exchanged only between the

polling node and the polled nodes

 The polling process stops on either finding a suitable partner

or a predefined poll limit is reached

STATE INFORMATION EXCHANGE
POLICY

 When process migration is supported by a distributed operating

system, it becomes necessary to devise a priority assignment

rule for scheduling both local and remote processes on a

particular node

 One of the following priority assignment rules may be used

 Selfish

 Local processes are given higher priority than remote processes

 Altruistic

 Remote processes are given higher priority than local processes

 Intermediate

 When number of local processes is greater or equal to number

of remote processes, local processes are given higher priority,

otherwise remote processes are given higher priority

PRIORITY ASSIGNMENT POLICY

MIGRATION LIMITING POLICIES

 Migration limiting Policies

 Another important policy to be used in Distributed

Operating System that support process migration, is

to decide about the total no. of times a process

should be allowed to migrate

 Uncontrolled: A process may migrate any no of times

 This policy has the property of causing instability

 Controlled: To overcome the instability problem of the

uncontrolled policy, most systems treat remote

processes different from local processes and use a

migration count to fix a limit on the number of times a

process can migrate

LOAD

SHARING

APPROACH

LOAD SHARING APPROACH

 It is necessary and sufficient to prevent nodes from

being idle while other nodes have multiple processes

running

 This modification is called dynamic load sharing

instead of dynamic load balancing

 Issues in Designing Load Sharing Algorithms

 Similar to load balancing algorithms, the design of a load

sharing algorithm also require that proper decisions be made

regarding load estimation policy, process transfer policy,

state information exchange policy, location policy, priority

assignment policy, and migration limiting policy

 However, when compared to load balancing, it is simpler as

the policies of load sharing does not attempt to balance the

workload on all the nodes of the system, like load balancing

algorithms try to do

 They only attempt to ensure that no node is idle when other

nodes are heavily loaded

LOAD SHARING APPROACH
(CONT’D)

 We will discuss different policies in detail for load sharing

approach

1. Load estimation policy

 Load sharing algorithms normally employ the simplest load

estimation policy of counting the total number of processes

on a node

 Simple count of total number of processes on a node is not a

good estimate as there are several idle daemon processes in

a modern day distributed system

 Hence a measure of CPU utilization should be used as a

method of load estimation

LOAD SHARING APPROACH
(CONT’D)

2. Process transfer policy

 As load-sharing algorithms are normally interested only in

busy or idle states of node, most of them use All-or-nothing

strategy

 The strategy uses single process policy with a single
threshold value for all nodes fixed at 1

 Nodes can receive process when it has no process, and send
process when it has more than 1 process

 The all-or-nothing strategy is not good in the sense that a
node that becomes idle is unable to immediately acquire a
new process even though processes wait for service at other
nodes leading to loss of processing power in the Distributed
System

 To address this anticipatory transfers to that are not idle,
but are expected to become idle soon is necessary

LOAD SHARING APPROACH
(CONT’D)

 Location Policy

 In load-sharing algorithms, the location policy decides

the sender node or the receiver node of a process that is

to be moved within the system for load sharing

 Based on the type of node that takes the initiative to

globally search for a suitable node for the process, the

location policies are adopted

 Sender initiated location policy

 The sender node decides where to send the process

 When node becomes overloaded, it either broadcasts or

randomly probes other nodes one by one to find a lightly

loaded node that can accept one or more of its processes

 Receiver initiated location policy

 When node becomes under-loaded (below threshold), it
either broadcasts or randomly probes other nodes indicating
its willingness to receive remote processes

 A node is a viable candidate for sending one of its processes
for executing only if it does not reduce its load below the
threshold limit

 Receiver initiated polices require preemptive process
migration facility while sender initiated policies can work
with out the support of preemptive process migration facility

 A preemptive migration facility allows the transfer of an
executing process from one node to another

 Preemptive process migration is costlier, since the process
state, which must accompany the process to its new node, is
much more complex after execution begins

LOCATION POLICY (CONT’D)

4. STATE INFORMATION

EXCHANGE POLICY

 Commonly used policies for this are as follows:

 Broadcast when state changes

 In sender-initiated/ receiver-initiated location policy a

node broadcasts StateInformationRequest when it

becomes overloaded / underloaded respectively

 In a sender-initiated policy, a node broadcasts this

message only when it becomes overloaded and in

receiver-initiated policy, this message is broadcast only

when it becomes underloaded

 Poll when state changes

 Since broadcast is not suitable for large networks, the

polling mechanism is normally used in such systems

 When a nodes state changes, it does not exchange state

information with all other nodes but randomly polls

other nodes one by one and exchanges state information

with the polled nodes

 The state exchange process stops either when suitable

node of sharing load is found or has reached the probe

limit

STATE INFORMATION EXCHANGE
POLICY

PROCESS

MIGRATION

PROCESS MANAGEMENT

 In a DOS, the main goal of the process management is to

make the best possible use of the processing resources of

the entire system by sharing them among all processes

 Process allocation: Which process should be assigned to

which processor; already discussed in resource management

 Process Migration: Movement of process from its current

location to new processor

 Threads : Fine grain parallelism for better utilization of the

processing capability of the system

PROCESS MIGRATION
 Process migration is the relocation of a process from its

current location (source node) to another node

(destination node)

 The flow of execution of a migrating process is shown in

fig. in the next slide

 Process migration mechanism deals with the actual

transfer of the process

 A process may be migrated either before it starts

executing called as non-preemptive process migration or

 During the course of its execution called as preemptive

process migration

Time

Source

Node

Destination

Node

Freezing

Time

Transfer of

Control

Execution

Suspended

Process P1 in

Execution

Process P1 in

Execution

 Process migration involves following major steps

 Selection of a process that should be migrated

 Selecting the destination node to which the selected process

should be migrated

 Actual transfer of the selected process to the destination

node

PROCESS MIGRATION (CONT’D)

DESIRABLE FEATURES OF GOOD
PROCESS MIGRATION MECHANISM

 A good process migration mechanism must possess

 Transparency – object access and IPC

 Minimal Interference

 Minimal Residual Dependencies

 Efficiency

 Minimize freezing time, cost of locating migrated process

 Cost of supporting remote execution

 Robustness

 Communication between Co-processes of a Job

PROCESS MIGRATION MECHANISM
 Migration of a process is a complex activity that involves

proper handling of several sub-activities in order to meet
the requirements of a good process migration explained
earlier

 The four major sub-activities involved process migration
are:

 freezing the process on its source node and restarting at
destination node

 Moving the process’s address space from source node to
destination node

 Forwarding messages meant for the migrant process

 Handling communication between cooperating processes
that are separated (placed on different nodes) as a result
of process migration

MECHANISM FOR FREEZING AND
RESTARTING A PROCESS

 In Preemptive process migration, the usual process is to

take a snapshot of process’s state on its source node &

reinstate it on the destination node

 For this, at some point during migration, the process is

frozen on its source node, its state information is

transferred to the destination node, and the process is

restarted on the destination node using this state

information

 By freezing process, we mean that the execution of

process is suspended and all external interactions with

the process are deferred

 Though freezing and restarting varies from system to

system, some of the general issues are discussed here

IMMEDIATE AND DELAYED
BLOCKING
 Before freezing a process, its execution has to be blocked

 The blocking may be immediate or the blocking may have
to be delayed until the process reaches a state when it can
be blocked

 Some of the typical situations are as follows

 If a process is not executing a system call it can be
immediately blocked

 If the process is executing a system call, but is sleeping at
an interruptible priority (at which any received signal would
awaken the process) waiting for a kernel event to occur, it
can be immediately blocked from further execution

 If the process is executing a system call and is sleeping at a
non-interruptible priority waiting for kernel event to occur,
it can not be blocked immediately

FAST AND SLOW I/O OPERATIONS
 In this situation, a flag is set, telling the process that when

the system call is complete, it should block itself from

further execution

 Fast and slow I/O operations

 In general, after the process has been blocked, the next step

in freezing the process is to wait for the completion of all

fast I/O operations (e.g., disk I/O associated with the

process)

 The process is frozen after the completion of all fast I/O

operations

 However, it is not feasible to wait for slow I/O operations to

complete, such as those on a pipe or terminal, because the

process must be frozen in a timely manner for the

effectiveness of process migration

 Resume slow I/O performed at destination

 Information About Open Files

 A process state information also contain the information

pertaining to files currently open by the process

 This includes such information as the names or identifier of

the files, their access modes, current positions of their file

pointers

 One of the two following approaches are used for this

 In the first approach, a link is created to the file and pathname

of the link is used as an access point to the file after the process

migrates

 In the second approach, an open file’s complete pathname is

reconstructed when required

 For this necessary modifications are done in the kernel

INFORMATION ABOUT OPEN FILES

 On the destination node, an empty process state is created

that is similar to that allocated during the process creation

 Once all the state information of the migrating process has

been transferred from the source node to the destination

node and copied into the empty process state, the new

process is unfrozen and the old copy is deleted

 Thus the process is restarted on the destination node in what

ever state it was before being migrated

REINSTATING THE PROCESS ON ITS

DESTINATION NODE

ADDRESS SPACE TRANSFER

MECHANISMS
 A process consists of a program being executed, along

with the programs data, stack and state

 Hence the migration of a process involves the transfer of

the following data

 Process’s state which consist of the execution status

(contents of registers), program counter, scheduling

information, main memory being used by the process

(memory table), I/O states (I/O queue, contents of the I/O

buffers, interrupt signals etc.), list of objects to which the

process has the right to access(capability list) process’s

identifier, process’s user and group identifiers, information

about the files opened by the process (mode, current

position of the pointer) etc.

 Process’s address space (code, data & stack of the program)

– which is usually more than process’s state information.

ADDRESS SPACE TRANSFER

MECHANISMS
 Though for transferring of state information the process

has to be stopped completely, the address space can be

transferred without stopping the execution

 Due to the flexibility in transferring the process’s address

space at any time after migration decision is made, the

existing distributed systems use one of the following

address space transfer mechanisms:

 Total freezing

 Pretransferring

 Transfer on reference

TOTAL FREEZING

 Process’s execution is stopped while transferring the
address space

 Simplest and easy to implement but slowest

 Can not be used with interactive processes as it will be
noticed by the user

T
ra

n
sfe

r o
f

a
d
d
re

ss sp
a
c
e

Source

node
Destination

node
Execution

Suspended
Migration

decision

Execution

resumed

Freezing

time

Total Freezing

PRETRANSFERRING (PRECOPYING)
 Address space is transferred while the process is still running on the

source node

 After the transfer, the modified pages are retransferred

 Freezing time is reduced

 Migration time may increase due to possibility of redundant transfer
of same pages

 Operation is executed at higher

priority than all other programs in

the source node to facilitate interrupt

free address space transfer

T
ra

n
sfe

r o
f

a
d
d
re

ss sp
a
c
e

Source

node
Destination

node

Execution

Suspended

Migration

decision

Execution

resumed

Freezing

time

Pretransferring

TRANSFER ON REFERENCE
 This method is based on the principle of spatial locality (processes

tend to use small part of address space while executing

 Process starts executing at destination before the address space is
migrated

 Pages are fetched from the source node as required demand-
driven, copy-on-reference approach

 Process continues to impose load on source node

 Freezing time very less

 Failure of source node

results in failure of

process
O

n
-d

e
m

a
n
d

T
ra

n
sfe

r o
f

A
d
d
re

ss sp
a
c
e

Source

node
Destination

nodeExecution

Suspended
Migration

decision
Freezing

time

Transfer-on-reference

Execution

resumed

MESSAGE FORWARDING

MECHANISM
 In moving a process, it must be ensured that all pending, en-

route and future messages arrive at the process’s new location

 These messages can be classified into three types of messages:

 Type1: Received when the process execution is stopped on the

source node and has not restarted on the destination node

 Type2: Received on the source node after the execution started

on destination node

 Type3: Sent to the migrant process after it started execution on

destination node

 The different mechanisms used for message forwarding are:

 Mechanism of resending the message

 Can handle all three type messages

 Message type 1 and 2 are returned to sender or simply
dropped, with the assurance that sender of the message is
storing a copy of data and prepared to retransmit it

 Sender retries after locating the new node using a locate
operation to find the new whereabouts of the process

 Type 3 message directly sent to new node

 Main drawback is that message forwarding mechanism not
transparent to the processes interacting with the migrant
process

 Origin site mechanism

 The process identifier of these systems has the process’s
origin site (or home node) embedded in it

 Each site keeps information about current locations of all
processes created on it

MESSAGE FORWARDING MECHANISM

 All messages are sent to origin site

 Origin site forwards messages to process’s current location

 If origin site fails, forwarding mechanism fails – reliability
issue

 Continuous load on the origin site even after migration

 Link traversal mechanism

 Message queue created at origin for type 1 & sent to
destination as a part of the migration procedure

 On migration, link of destination node is left on source node

 Thus to forward type 2 and 3 messages, a migrated process is
located by traversing a series of links (starting from the
node, where the process was originally created) forming
chain ultimately leading the process final destination

MESSAGE FORWARDING MECHANISM

(CONT’D)

 Its main drawbacks are poor efficiency and reliability as
several links may have to be traversed to locate a process

 Process can’t be located if any node in chain of links fail

 Link update mechanism

 During transfer phase the source node sends link update
messages to the kernels controlling all of the migrant
process’s communication partners.

 This task is not expensive as its performed in parallel

 Type 1 and 2 messages are sent via source node, type 3
sent directly

MESSAGE FORWARDING MECHANISM

(CONT’D)

CO-PROCESSES HANDLING
 Need to provide efficient communication between a

parent process and its sub-processes (children), which
might have migrated and placed on different nodes.

 Two different mechanisms to address this problem are:

 Disallow separation of co-processes: the simplest method is
to disallow their separation which can be achieved by

 Disallow migration of processes that wait for their children to
complete

 Ensure that when parent process migrates all its child processes also
migrates along with it

 Home node origin

 Communication between parent process & its children processes
take place via home node increasing the message traffic and
communication cost considerably

ADVANTAGES OF PROCESS

MIGRATION

 Reducing average response time of processes by

balancing workload

 Higher throughput

 Speeding up individual jobs by concurrent execution

 Utilizing resources effectively

 Reducing network traffic by migrating process closer to

resource

 Improving system reliability by migrating critical

processes to more reliable node

 Improving system security by migrating sensitive

processes to more secure node

THREADS

PROCESSES
 Processes are independent execution units that contain

their own state information, use their own address

spaces, and only interact with each other via IPC

 Inter-process communication is expensive

 Context Switch expensive but Secure: one process

cannot corrupt another process

THREADS
 Threads are a popular way to improve application

performance through parallelism

 In traditional operating systems the basic unit of CPU

utilization is a process

 On the other hand, in OS that support threads the basic

unit of CPU utilization is a thread

 In these operating systems, a process has an address

space and one or more threads of control as shown in the

figure in the next slide

 Each thread of a process has its own program counter, its

own register states, and its own stack

 But all the threads of a process share the same address

space

 Hence they also share the same global variabless

 They also share the same set OS resources, like open
files, child processes, semaphores, signals, working
environment (current directory, user ID), accounting
information and so on

 The uniqueness of threads of a process is that all of them
are owned by a single user and a single process and
hence very little amount of protection needed

 There is no protection between the threads of a process

Address Space

Thread

Address Space

ThreadThread Thread

Single threaded and

Multi threaded

Processes

THREADS (CONT’D)

 On a uniprocessor, threads run in quasi-parallel (time

sharing), whereas on a shared memory multi-

processor, as many threads can run simultaneously as

there are processes

 In addition, like traditional processes, threads can

create child threads, can block threads for system

calls to complete and can change states during their

course of execution

 At a particular instance of time a thread can be in

any one of the states: running, blocked, ready, or

terminated

THREADS (CONT’D)

SINGLE AND MULTITHREADED

PROCESSES

 Due to these similarities, threads are often viewed as

mini-processes or referred to as lightweight processes

and traditional processes are referred to as heavyweight

processes

MOTIVATIONS FOR USING THREADS

 In certain cases, a single application may need to run

several tasks in parallel and at the same time

 Let us consider the motivation for using

multithreaded process instead of multiple single

threaded processes for performing some computation

activities

 Create a new process for each task

 Overheads involved in creating a new process are in

general considerably greater than those of creating a

new thread within a process

 This mainly because when a new process is created, its

address space has to be created from scratch, though part of

it is inherited from the parent process

 Switching between threads that are sharing the same

address space and other operating system resources is

considerably cheaper than switching between processes

with their own address space and other operating system

resources

 Threads allow parallelism to be combined with sequential

execution and blocking of system calls

 Parallelism improves performance and blocking system calls

make programming easier

 Resource sharing can be achieved more efficiently and

naturally between threads of a process than between

processes because all threads of a process share the same

address space

 From the discussion above, we saw the motivation for

using threads in the design of server processes

 Use a single process with multiple threads is a better

option

 For eg, when a file is to be replicated on multiple servers,

a separate thread can be used to interact with each server

 Client processes that perform lots of distributed operations

can also benefit from threads by using a separate thread to

monitor each operation

MOTIVATIONS FOR USING THREADS

(CONT’D)

MODELS FOR ORGANIZING THREADS

 Depending on an application needs threads of an

application can be organized in different ways

 Three commonly used ways to organize the threads are

 Dispatcher-Worker Model: We have already discussed this

model in the client-server application

 In this model the process consists of a single dispatcher thread

and multiple worker threads

 Dispatcher thread receives the request from the clients and after

examining the request, and dispatches it to one the free worker

threads for further processing of the request

 Each worker thread works on different client request

 Hence multiple client requests can be processed in parallel

 An example of this model is shown in the next slide

Dispatcher Worker Model

Request

T TT

1 2 3 Each type of

request being

handled by a

different

thread.

Ex. Interrupt

handler threads
Team Model

Request

T TT
Output generated by

first thread used for

processing by

second thread.

Ex Producer Consumer

applications

Pipeline

Model

Dispatcher thread

Worker

Thread

Request

Worker

Thread

Ex.

File

server

Worker

Thread

port

port

por

t

MODELS FOR ORGANIZING THREADS

(CONT’D)

 Team Model

 In this model all threads are equals in the sense that there is no
dispatcher-worker relationship for processing client requests

 Each thread gets and processes clients’ requests on its own

 This model is often used to implement specialized threads within
a process

 i.e., each thread of the process is specialized in servicing a
specific type of request

 Hence multiple types of requests can be handled by different
threads

 An example is shown in the previous slide for interrupt handler

 Pipeline model

 This model is useful for applications based on producer-consumer
model, in which output data generated by one part of the
application is used as input to another part of the application

MODELS FOR ORGANIZING THREADS

(CONT’D)

 In this model, the threads of a process are organized as a

pipeline so that the output data generated by first thread is

used for processing by the second thread, the output of the

second thread is used for processing by the third thread, and

so on

 The output of the last thread in the pipeline is the final

output of the process to which the threads belong

 A typical example is shown in earlier slide

MODELS FOR ORGANIZING THREADS

(CONT’D)

THREADS PACKAGE DESIGN ISSUES

 A system that supports threads should support a set of

primitives to its users for threads related operations and

this set of primitives is called threads package

 Threads creation

 Threads can be either static (created at the start of the

process and fixed for entire life of the process) or dynamic (

as and when required)

 but the maximum number of threads remain fixed

 Threads termination

 Destroy itself when it finishes its job or killed from outside

by a kill command

 Threads are terminated only when the process is terminated

 Thread synchronization

 Since all threads of a process share a common address space,

there has to be some mechanism to prevent multiple threads

from trying to access the same data simultaneously

 For example if two threads want to increment a global

variable with in a process, there has to be a mechanism to

ensure that a thread has exclusive access to that variable for

some time

 Two commonly used mutual exclusion techniques in a

threads package are mutex variables and condition variables

THREADS PACKAGE DESIGN ISSUES

THREAD SCHEDULING
 An important aspect of thread package is how to schedule the

threads

 Threads package normally give the users the flexibility to
specify scheduling policy to be adopted for their application

 Priority assignment facility

 In a simple algorithm, threads as scheduled FIFO or Round Robin
policy (all threads are equal)

 It also provides users the flexibility of assigning priorities to the
various threads of an application with important ones run on higher
priority

 Priority assignment facility may be Preemptive / Non Preemptive

 In a non preemptive once CPU is assigned to a thread, it
can use the CPU until it blocks, exits or uses up its
quantum, even if a higher priority threads wants to start in
between

 In preemptive scheme a higher priority thread always
preempts lower priority one

 Flexibility to vary quantum size dynamically: Instead of using

fixed length time of Round Robin, vary the size of quantum

inversely proportional to total no of threads in the system

 This algorithm gives good response time to short requests, even

on heavily loaded systems, provide high efficiency on lightly

loaded systems

 Handoff scheduling

 It allows a thread to name its successor

 After sending a message, to another thread, the sending thread

can give up the CPU and request that the receiving thread be

allowed to run next

 This can enhance performance if wisely used

 Affinity scheduling

 Thread is scheduled on the CPU it last ran on in the hope that

part of address space is still in CPU’s cache

THREAD SCHEDULING (CONT’D)

SIGNAL HANDLING

 Signals provide software generated interrupts and

exceptions

 Interrupts are externally generated disruptions of a thread

or a process, while exceptions are caused by the occurrence

of unusual conditions during a thread’s execution

 A signal is handled properly by creating a separate

exception handler thread in each process, which is

responsible for handling all exception conditions occurring

in any thread of the process

 The exception handler may clear the exception, causing the

victim thread to resume, or terminate the victim thread

 A threads package can be implemented in user space or in the
kernel i.e., user-level and kernel-level

 In user-level, user space consists of a runtime system that is a
collection of thread management routines

 Threads run in the user space on top of the run time system
and is managed by it

Processes and their

threads

Runtime System

(Maintains thread status

information)

Kernel

(Maintains process

status information)

Processes and their

threads

Kernel

(Maintains thread

status information)

Kernel

space

User

Space

User Level Kernel Level

IMPLEMENTING A THREADS PACKAGE

 The run time system also maintains a status information table to
keep track of the current status of each thread, whose entry
consists of registers’ value, state, priority and other information
of a thread

 All calls of the threads package are implemented as calls to the
runtime system procedures that perform the functions
corresponding to the calls

 Existence of threads are made totally invisible to Kernel

 Implemented in kernel

 In the kernel-level approach, no runtime system is used and the
threads are managed by the kernel

 Status information is maintained within the kernel

 All calls that might block a thread are implemented as system
calls that trap to the kernel and when a thread blocks, kernel
runs another thread

 Fig. on the previous slide illustrates the two approaches for
implementing thread package

IMPLEMENTING A THREADS
PACKAGE

USER-LEVEL VS. KERNEL-LEVEL
 Advantages of User – level implementation

 Threads package can be implemented on top of an
existing OS that does not support threads; this is not
possible in kernel-level, as concept of threads must be
incorporated in the design of the kernel of an operating
system

 Users can use customized scheduling algorithms using
the two-level scheduling of user-level, while in kernel-
level, it is built into the kernel

 Context switching is faster in user-level as it is done by
the runtime system without involving kernel, while in
kernel level approach a trap to the kernel is needed for
it

 Scalability of kernel level approach is poor as the status
information is maintained by the kernel

 Disadvantages of User – level implementation

 Once the thread is given a CPU to run, as there is no way to
interrupt it (no clock) and it continues to run until it
voluntarily gives up the CPU, while in kernel approach,
clock interrupt occur periodically and kernel can keep
track of amount of CPU time used by a thread

 A means to solve this problem to have the run time system
request a clock interrupt after every fixed unit of time to
give it the control then the runtime can decide the thread
should continue or exit

 When a thread makes a blocking system call, all threads of
its process are stopped & kernel schedules another process
to run, while in kernel-level approach, implementation of
blocking system calls is straight forward because it traps
the kernel, where the present thread is suspended and the
kernel starts a new thread

USER-LEVEL VS. KERNEL-LEVEL

FAULT

TOLERANCE

INTRODUCTION
 A fault is a malfunction caused by errors due to

design, programming, manufacturing, physical
damage, ageing etc.

 Failures can be mild like a file not found or
catastrophic like communication crash in an air
traffic control system.

 Faults can be classified as:

 Transient faults: these faults occur suddenly,
disappear and may not occur again if the operation is
repeated. For eg, fault due to heavy network

 Intermittent faults: these faults recur often, but may
not be periodic in nature. For eg., loose connection
to a network switch. Sometimes difficult to diagnose.

 Permanent Faults: these faults can be easily

identified and the component can be replaced.

For eg., a software bug.

 Types of faults: fail-stop failure and

byzantine failure.

One of the techniques to handle fault

tolerance is redundancy, which can be

categorized as:

 Information Redundancy: extra bits are added

with the transmitted data to detect and correct

errors. Commonly used methods are Hamming

Code, parity check, CRC etc.

 Time Redundancy: an action performed once is

repeated if needed after a specific time period.

Such as retransmission of messages.

 Physical redundancy: extra component added to

system. For eg., extra processors

This can be further divided into active

replication and primary backup methods.

Active Replication – all processors are up all

the time in parallel.

Primary Backup – faulty processor replaced

with backup processor.

UNIVERSITY QUESTIONS
 What are threads? How are they different from

processes? Compare the implementation of a
threads package at user level and system level.

 Explain the concept of total freezing in address
space transfer mechanism for a process
migration facility with proper diagram. Is it
better than pretransferring or transfer on
reference?

 Give suitable examples for each of the following,
a process using multiple threads :-

 In dispatcher worker model

 In a pipelined process model

 In a team model

 Explain fully the concept of preemptive process
migration. What are different address space transfer
mechanisms used in the process transfer?

 What are threads? How are they different from
processes?

 What are the main differences between the Load
Balancing and Load Sharing approaches for process
scheduling in distributed systems.

 Discuss the various issues of load sharing approach
used for better resource utilization.

 What are desirable features of good process
migration mechanism.

 What are the different address space transfer
mechanisms used in the process transfer?

 What is the need of state information exchange
among nodes in distributed system? Explain the
various state information exchange policies for load
balancing algorithms.

 Discuss relative advantages and disadvantages of
preemptive and non-preemptive process migration.

