
DISTRIBUTED SHARED
MEMORY

Distributed Shared Memory

 We have mentioned earlier that there are two basic paradigms or IPC
mechanisms namely:

 Message Passing Paradigm: Message passing systems or systems supporting
RPC adhere to the message passing paradigm and it has two basic primitives
for IPC

 easy to implement

 hard to program

 no global clock

 no common memory

LOCAL MEMORY

PROCESSOR

LOCAL MEMORY

PROCESSOR

Distributed Shared Memory(Cont’d)

 Shared Memory Paradigm: In contrast to the message passing
paradigm, the shared memory paradigm provides to processes in a
system with a shared address space

PROCESSOR

PROCESSOR

SHARED

DATA

 easy to
program

 hard to
implement

CPU 1

Memory

Memory

Mapping
manager

CPU n

Node 1

Communication network

CPU 1

Memory

Memory

Mapping
manager

CPU n

Node 2

CPU 1

Memory

Memory

Mapping
manager

CPU n

Node n

Distributed Shared Memory
(Exists only virtually)

Distributed Shared Memory

Types of DSMs

 DSM systems can be classified on the basis of:

 DSM Implementation (where and how)

 DSM Algorithm (reflects adopted strategy)

 Organization of DSM management

 Based on first criteria , systems are classified as :

 Hardware-level DSM: these system uses smaller unit of
sharing such as cache block.HDS is often used in high-
end machines where performance is more important
than cost but these implementations are not much
scalable.

 Software-level DSM: this implementation is based
on level of programming language, where the
compiler detects shared accesses and inserts calls
for synchronization and coherence into the code.

 Implementation is shown on next page
 If a processor does not find the page in its local

memory, it triggers a page fault to the DSM
runtime software. It locates the page and transfers
it to the local memory of the requesting processor.

Process 1 Process 2 Process 3 Process N…

…

Page Fault Global Virtual
Memory

DSM Software

Local Physical Memories

 Hybrid-level DSM: Hybrid level DSM lies
between hardware and software DSM
systems. Typical example for this is NUMA
machines. Like a multiprocessor, each NUMA
processor can access each word in the
common virtual address space by reading or
writing to it.

Advantages of DSM

 Simpler abstraction

 Shields programmers from low level concerns

 Better portability of distributed application program

 Distributed application programs written for shared memory processor
can be executed on DSM system without any change

 Better performance of some application

 Ongoing On-demand data movement

 Larger memory space

Advantages of DSM

 Flexible communication environment

 No formal IPC required, communication through shared space

 Ease of process management

 Migrant process can leave its address space on its old node at the time of
migration & fetch required pages from its new node on demand at time of
accessing

Hardware DSM

 There are few hardware architectures
discussed here:

 On-chip Memory DSM: CPUs with little
functionality and on-chip memory are widely used
in cars, appliances and toys. The address and the
data lines are directly connected from all CPUs to
the single shared memory. Practically, it is
expensive and impossible to build a set of
hundred CPUs with single shared memory.

Memory

CPU 4

CPU 3CPU 1

CPU 2

….

….

 Bus-based Multiprocessor:
CPU MemoryCPUCPUCPU

Bus-based multiprocessor

CPU

Memory

CPUCPUCPU

Cache Cache Cache Cache

Bus-based multiprocessor with caching

 To maintain consistency amongst caches
write-through cache consistency protocol is
used.

 Advantages:

 Consistency is achieved since all caches snoop.

 Protocol is built into MMU.

 The algorithm is performed in one memory cycle.

 Ring-based Multiprocessor: these are
implemented in Memnet DSM. A single
shared memory is divided into private and
shared areas.

 Private space is allocated per machine to
accommodate unshared data and code.

 Hardware is used to keep the data in shared
spaces consistent

CPU

CPU

CPU
CPU

Memnet RingPrivate Memory

MMU Memory

 Switched Multiprocessor: both bus and ring
bandwidth saturate and reduce system
performance.

 To overcome the problem, we can either
reduce amount of communication by caching
or increase the communication capacity by
adding more than one bus.

Switch

MemoryCPUCPUCPU

Switch

MemoryCPUCPUCPU

Switch

MemoryCPUCPUCPU

Intercluster Bus

Design and Implementation Issues of DSM

1. Granularity:

 Refers to block size of a DSM system, the unit sharing and data
transfer across the network when network block fault occurs

 Block size is a measure of the granularity of a DSM

 It is an important part of the design of DSM as it determines the amount
of network traffic generated on network on block fault

2. Structure of shared memory space:

 Layout of the shared data in memory

 Its structure is normally dependent on the applications that the DSM
system intend to support

 Can be unstructured, structured as datatypes, structured as database.

Design and Implementation Issues of DSM (Cont’d)

3. Memory coherence and access synchronization

 In a DSM system that allows replication of shared data items, copies of
shared data items may simultaneously be available to main memories of
number of nodes

 In this case the main problem is the memory coherence that deals with the
consistency of a piece of shared data lying in the main memories of two or
more nodes

 This problem is similar to the problem in shared multiple processor
systems that have multiple caches

 In a DSM system concurrent accesses to shared data is possible

 Hence just memory coherence protocol is not sufficient to maintain
consistency of shared data

 Synchronization primitives, such as semaphores, event count and lock are
needed to synchronize concurrent accesses to shared data

Design and Implementation Issues of DSM (Cont’d)

4. Data location and access

 To share data in a DSM system, it should be possible to locate and
retrieve data accessed by a user process

 Hence some form of data block location mechanism to service
network data block faults must be implemented by the DSM.

5. Replacement strategy

 If the local memory of a node is full, a cache miss at that node implies
not only a fetch of the accessed data block from a remote node, but
also a replacement

 i.e., a data block of the local memory that must be replaced

 Hence a cache replacement strategy has to be in place

Design and Implementation Issues of DSM (Cont’d)

6. Thrashing

 In DSM the data blocks migrate between nodes on demand

 Data block gets transferred back & forth at a high rate if two nodes
compete for write access to a single data item

 This will result in heavy network traffic without really achieving any
real work done

 Hence DSM must use a policy to avoid this situation known as
thrashing

7. Heterogeneity

 In a network containing heterogeneous systems, one needs to look
into individual memory access modalities and architecture, before
building a DSM system

Granularity

 One of most important factor to be chosen in the design of a DSM
system is the block size

 Factors influencing block size selection

 Paging overhead

▪ Less for large block size because of locality of reference as it is well known that a
process is likely to access a large region of the address space in a small interval
of time

▪ Hence paging overhead is less for large block sizes

 Directory size

▪ Larger block size, smaller directory information of the blocks in a system to be
maintained

Granularity (Cont’d)

 Thrashing

▪ Thrashing occurs when data items in the same block are being updated by
multiple nodes at the same time, resulting large number of block transfers
among nodes without much progress in application execution

▪ Though thrashing can occur in any block size, it is more likely in large block sizes

▪ As different data in same data block may be updated by processes in different
nodes which may not be necessary if the block size was smaller

▪ Another condition in which thrashing occurs is when two variables in different
blocks are accessed repeatedly and one of the two pages is swapped out of a
system by the page replacement algorithm again and again

Granularity (Cont’d)

 False sharing

▪ False sharing occurs when two different processes access two unrelated
variables that reside in same data block

▪ In such a case even though the original variables are not shared, the data
block appears to be shared by two processes

▪ Larger is the block size, higher is probability of false sharing

▪ Also note this can lead to thrashing

P1

P2

False Sharing

Process P1 accesses
Data in this area

Process P2 accesses
Data in this area

False Sharing

Block sizing

 Use page size as block size

 Relative advantages & disadvantages of small and big block size, makes it
difficult for a DSM designer to decide on the block size

 It has been shown that using a same block size as the page size of the
individual system has the following advantages

 Allows the use of existing page-fault scheme

 Allows access right control to be integrated into memory management
unit of the system

 If page can fit into packet, it does not impose undue communication
overhead at the time of page fault

 Experience has shown that page size is a suitable data entity for memory
contention

CONSISTENCY
MODELS

Consistency Models

 Consistency requirements of a DSM varies from application to application

 A consistency model basically refers to the degree of consistency that has to
be maintained for the shared memory data for the memory to work correctly
for a certain set of applications

 To improve performance, DSM systems rely on replicating shared data items
and allowing concurrent access at many nodes

 However, if the concurrent accesses are not carefully controlled, memory
accesses may be executed in an order different from that which the
programmer expected

 It is defined as a set of rules that applications must obey if they want the
DSM system to provide the degree of consistency guaranteed by the
consistency model

 A system supports stronger consistency model, then the weaker consistency
model is automatically supported but the converse is not true

 Several consistency models have been proposed

 Let us consider some of the main ones

Consistency Models (Cont’d)

Strict (Atomic) Consistency Model

 It is the Strongest form of memory coherence

 Any read to a memory location X returns the value stored by the most
recent write operation to X (changes are instantaneous) irrespective of the
locations of the processes performing read & write operations

 i.e. all write instantaneously visible to all processes

 Absolute synchronization of clocks of all the nodes of a distributed
system is not possible, so is the single global time

 Hence an implementation of strict consistency model in DSM is
practically not possible

 Possible only on uniprocessor or shared memory systems

 Weaker than strict consistency model and experience shows that
programmers can often manage well with weaker models

 When processes run concurrently (possibly) on different machines, any valid
interleaving of read and write operations is acceptable behavior, but all
processes see the same interleaving operations

 A shared memory system is said to support the sequential consistency model
if all processes see the same order of all memory access operations on the
shared memory

 The exact order in which the memory access operation are interleaved does
not matter

 If three operations r1, w1, r2 are performed on a memory address in that
order, any ordering (r1, w1, r2), (r2, w1, r1), (w1, r2 , r1), (r2, r1, w1) is acceptable
provided all processors see same ordering

Sequential Consistency Model

Causal Consistency Model

 The casual consistency model relaxes the requirement of sequential
consistency model for better concurrency

 In this model all processes see only those memory reference operations in the
same (correct) order that are potentially casually related

 Memory reference operations that are not potentially casually related writes
may be seen in a different order on different machines

 A memory reference operation (read/write) is said to be potentially causally
related to one another memory reference operation if the first one might
have influenced the second one in any way .

 For example, if a process performs a read operation followed by write
operation, the write operation is potentially causally related to read
operation, because the computation of the value written may have some way
depend on the value obtained by the read operation

 On the other hand, a write operation performed by one process is not
causally related to a write operation performed by another process, if
the first process had not read either the value written by the second
process or any memory variable that was directly or indirectly derived
from the value written by the second process

Causal Consistency Model (Cont’d)

Pipelined Random Access Memory
(PRAM) Consistency Model

 PRAM consistency is also known as FIFO consistency

 Writes done by a single process are received by all other processes in the
order in which they were issued, but writes from different processes may be
seen in a different order by different processes

 Ex. Process P1 executes w11 & w12

Process P2 executes w21 & w22

P3 sees it as (w11 , w12)(w21 , w22)

P4 sees it as (w21 , w22) (w11 , w12)

PRAM consistency Model (Cont’d)

 All write operations performed by a single process are pipelined
i.e., the process does not have to stall waiting for each one to
complete before starting next one and all writes by different
processes are concurrent

 It leads to better performance than the previous models because a
process need not wait for a write operation performed by it to
complete before starting the next one, as all write operations of a
single process are pipelined

 Processor Consistency Model is PRAM consistent with additional restriction
of memory coherence, i.e. for every memory location x, there be a global
agreement about order of writes to x

 Memory coherence means all processes agree on the same order of all write
operations to that location

 All write operations performed on the same memory location (no matter by
which process they are performed) are seen by all processes in the same
order

 Ex. Process P1 executes w11 & w12

Process P2 executes w21 & w22

P3 & P4 both see it as (w11 , w12)(w21 , w22) or

(w21 , w22) (w11 , w12) if they are writes to same memory location

Processor Consistency Model

Weak Consistency Model

 The weak consistency model is based on following facts

 It is not necessary to show the change in memory done by every write
operation to other processes

 The results of several write operations can be combined & sent to other
processes only when they need it; e.g., when executes in Critical section

 Other processes need not see changes made by a process until that process
exits from critical section

 Isolated accesses to shared variables are rare; i.e., in many applications, a
process makes several accesses to a set of shared variables and then no
access at all to the variables in this set for long time

 These characteristics imply that better performance can be achieved if
consistency is enforced on a group of memory operations rather on
individual memory reference operations

 This is the basic idea behind weak consistency model

 Responsibility of programmer is to decide when to reflect changes in all
processes, but for better performance

 For this, DSM supporting weak consistency model uses a special variable
called synchronization variable and operations on it can synchronize
memory

 When it is accessed by a process, the entire (shared) memory is
synchronized by making all changes to the memory made by all processes
visible to all other processes

 When a synchronization completes, all writes done on that machine are
propagated outward & all writes done on other machine are brought in

Weak Consistency Model (Cont’d)

 The following requirements must be met:-

 All Accesses to synchronization variables associated with a data store are
sequential consistent

 Access of a synchronization variable is broadcast, so no other synchronization
variable can be accessed in any other process until this one is finished
everywhere

 All previous write operations must be completed everywhere, before access to
a synchronization variable

 Synchronization “flushes the pipeline, by forcing all the writes operations to
be completed everywhere

 All previous accesses to synchronization variables must be complete before
access to a non-synchronization variable, so that a process can be sure of
getting the most recent values

Weak Consistency Model (Cont’d)

 In weak consistency model the entire (shared) memory is
synchronized when a synchronization variable is accessed by a
process and memory synchronization involves

 All changes made to the memory by the process are propagated to other
processes (which is required only on exiting critical section).

 All changes made to the memory by other processes are propagated from
other nodes to the process’s node (required only before entering CS).

 In order to facilitate this Release consistency model was proposed

Release Consistency Model

 It uses two synchronization variables

 Acquire used to enter critical section

 Release used to exit critical section

 Acquires & releases on different locks occur independent of each other

 The programmer is responsible for inserting these two variables in the
code, explicitly by calling library procedures

 Can be achieved by using barrier mechanism also instead of critical
regions

Release Consistency Model (Cont’d)

 A barrier is a synchronization mechanism that prevents any process
from starting phase n+1 of a program until all processes have finished
phase n

 When a process arrives at a barrier, it must wait until all other
processes get there too

 When the last process arrives, all shared variables are synchronized &
then all processes are resumed

 This also known as eager release consistency

Release Consistency Model (Cont’d)

Lazy Release Consistency Model

 A different implementation of release consistency is lazy release
consistency

 Usually, when a release is done, the process doing the release pushes
all the modified data to all processes that already have a copy of the
data and thus might potentially need it and there is no way to tell if
they actually need it, making the system inefficient

 In Lazy release model, modifications are not sent to other nodes at
the time of release

 When a process does an acquire, it has to get the most recent values
of the data from the process or processes holding them

 No network traffic generated until another process does acquire

Summary of Consistency Models

 Str
ong
Con
st.
mo
dels

 We
ak
con
st.
mo
dels

 Model
s do
not
use
synch.
opera
tions

 Models
use
synch.
operati
ons

Implementation
of

Sequential Models

Implementing Sequential Consistency Model

 We have seen our earlier discussion is that the most commonly used
consistency model in DSM systems is the sequential consistency model

 A protocol for implementing the sequentially consistent DSM systems is
presented here

 These protocols to a great extent depend on whether DSM allows
replication and/or migration of shared memory data blocks

 The design may choose among the following replication and migration
strategies

 Nonreplicated , nonmigrating blocks (NRNMBs)

 Nonreplicated , migrating blocks (NRMBs)

 Replicated , migrating blocks (RMBs)

 Replicated , nonmigrating blocks (RNMBs)

Nonreplicated, Nonmigrating Blocks

 This is the Simplest strategy

 Each block of the shared memory has a single copy whose location is
always fixed

 All access requests to a block from any node are sent to the owner node
of the block, which has only copy of the block

 On receiving the request from a client node, the memory management
unit (MMU) and Operating System S/W of the owner node perform the
access request on the block and return a response to the client

Request

Response

Client node
(sends request
and
Receives
response)

Owner node of the block
(receives request, performs
data
Access and sends response)

 Although the method is simple and easy to implement, it suffers
from the following Drawbacks

 Serializing data access creates a bottle neck

 Parallelism, which is a major advantage of DSM is not possible

 Data Locating in the NRNMB Strategy has the following
characteristics

 There is a single copy of each block in the system

 The location of the block never changes

 Use mapping function to map a block to a node

 When the fault occurs, the fault handler of the faulting node uses the
mapping function to get the location of the accessed block and forwards
the access request to that node

Nonreplicated, Nonmigrating Blocks

Nonreplicated, Migrating Blocks

 Each block of the shared memory has a single copy in the entire
system

 Each access to a block causes the block to migrate from its current
node to the node from where it is accessed, thus changing its owner

 At a given time data can be accessed only by processes of current
owner node

 Ensures sequential consistency

Client
node

Owner
node

Block request

Block migration

Client node
(becomes new owner node
of block after the migration)

Owner node of the block
(owns block before its migration)

 The method has the following advantages

 Data located locally so no communication cost

 Cost of multiple accesses reduced if high locality of reference.

 Disadvantages

 Prone to thrashing problem

▪ The block may keep migrating frequently from one node to another,
resulting in few memory accesses between migration and thereby poor
performance

 The advantage of Parallelism can not be availed in this method also

 In the NRMB strategy, although there is a single copy of each
block, the location of block keeps on changing dynamically

Nonreplicated, Migrating Blocks

 Hence one of following method can be used to locate a block

 Broadcasting

 Each node maintains an owned blocks table that contains an entry for each
block for which the node is the current owner (fig in next slide)

 When page fault occurs, the fault handler of faulting node broadcasts a
read/ write request on network, to which the current owner responds by
sending the block

 The major disadvantage of this algorithm is that it does not scale well

 When a request is broadcast all nodes must process broadcast request
leading to communication bottleneck

 Network latency may also lead to accesses taking long time

Data Locating in NRMB Strategy

Block Address
(changes dynamically)

Changes an entry for
Each block for which

this node is the current
owner

Owned blocks table

Node 1
Node Boundary

Block Address
(changes dynamically)

Changes an entry for
Each block for which

this node is the current
owner

Owned blocks table

Node L
Node Boundary

Block Address
(changes dynamically)

Changes an entry for
Each block for which

this node is the current
owner

Owned blocks table

Node M

Data Locating in NRMB Strategy

 A centralized server maintains a block table that contains the location
information for all blocks in the shared-memory space (fig. in next
slide)

 The location and identity of the centralized server is well known to all
nodes

 When a fault occurs fault handler of faulting node sends request to
centralized server, which forwards the request to current owner

 Block is transferred & current node information also changed

 The main drawbacks are

 Centralized server serializes location queries, reducing parallelism

 Centralized server is bottleneck and its failure will make the entire DSM
to halt

 Centralized Server Algorithm

 Block
address

(remains
fixed)

 Owner
node

(changes
dynamicall

y)

 Contains an entry for each
block in Shared memory

space

 Block table
 Centralized Server

 Node boundary Node boundary

 N
od
e 1

 No
de
m

 Node i

Centralized Server Algorithm

 Is a direct extension of the centralized-server scheme

 It overcomes the problems of centralized server scheme by distributing
the role of the centralized server

 In the scheme there is block manager on several nodes and each block
manager is given a predetermined subset of data blocks to manage

 A mapping function describes the mapping data blocks to block manager
and their corresponding nodes

 When a fault occurs, the mapping function is used by the fault handler to
find out node whose block manager manages currently accessed block

 Then a request for the block is sent to the block manager of that node,
block manager handles request in the same manner as in central server

 Fixed distributed server algorithm

 Node boundary Node boundary

 Contains entry for
fixed subset of
blocks in the shared
memory space

 Block
address
(remai
ns
fixed)

 Owner
node
(changes
dynamica
lly

 Block table
 Block Manager

 Node 1

 Contains entry for
fixed subset of
blocks in the shared
memory space

 Block

addre
ss
(rema
ins
fixed)

 Owner

node
(changes
dynamic
ally

 Block table
 Block Manager

 Node i

 Contains entry for
fixed subset of
blocks in the shared
memory space

 Block

addre
ss
(rema
ins
fixed)

 Owner

node
(change
s
dynamic
ally

 Block table
 Block Manager

 Node m

Fixed distributed server algorithm

 This scheme does not keep any block manager and attempts to keep track of the
ownership information of all blocks in each node

 Each node has a block table that contains the ownership information for all the
blocks in shared memory space

 However, the information contained in the ownership field is not necessarily
correct at all times, but if incorrect, it at least provides the beginning of a
sequence of nodes to be traversed to read the true owner node of a block; Hence
it is called probable owner table

 When fault occurs, the faulting node (N) extracts from its local block table the
node information stored in the probable owner field of the accessed block

 If that node is the true owner of the block, it transfers the block to node N and
updates its local block table to node N

 Else it looks up its local block table and forwards the request to the entry in its
block table and updates its block table to node N

 When node N receives the block, it becomes the new owner of the block

 Dynamic distributed server algorithm

 Probable
node
(Changes
dynamic
ally

 Contains entry
for each block in
the shared
memory space

 Block table

 Node 1

 Node Boundary
 Node Boundary

 Contains entry
for each block in
the shared
memory space

 Block table

 Node i

 Contains entry
for each block in
the shared
memory space

 Block table

 Node m

Block
address
(remains
fixed)

Block
address
(remains
fixed)

Block
address
(remains
fixed)

Probable
node
(Changes
dynamically

Probable
node
(Changes
dynamically

Dynamic distributed server
algorithm

Replicated, Migrating Blocks (RMB)

 Major issue with non-replication strategies is lack of parallelism
because only the processes on one block can access data
contained in a block at any given time

 To increase parallelism, virtually all DSM systems replicate blocks

 Replication increases parallelism but complicates memory
coherence due to requirement of keeping multiple copies of the
block consistent

 Replication tend to increase the cost of write operations because for a
write to a block, all its replicas must be invalidated or updated to
maintain consistency

 The two basic protocols used for ensuring sequential consistency

 Write invalidate: all copies of a piece of data except one are invalidated
before a write can be performed on it

 When write fault occurs at a node, its fault handler copies the accessed
block from one of the block’s current nodes to its own node, invalidates all
other copies of the block by sending an invalidate message containing the
block address to the nodes having a copy of the block, then updates the
block

 The node owns that block until the block ownership is relinquished to
some other node

Replicated, Migrating Blocks (Cont’d)

Write Invalidate

Has valid copy of data
block after write
operation

Client
node

Nodes having valid copies of the
data before write operation

1. Request block

2. Replicate block

3. Invalidate block

Node-1

Node-2

Node-
m

 If one of the nodes with invalid copy of a block, tries to perform memory
access operation, a cache miss will occur and the fault handler of that node
will have to fetch a valid copy of the block

 Therefore the scheme achieves sequential consistency

 In this scheme, a write operation is carried out by updating all
copies of the data on which the write is performed

 Fault handler after modifying block, sends address of modified
memory location & its new value to nodes having its copy

 Write operation completes only after all copies of block have been
successfully updated, only then returns to the faulting instruction,
but making it an expensive approach (fig. in next slide)

 It maintains the sequential consistency and it can be achieved by
using a mechanism to totally order the write operations of all the
nodes so that all processes agree on the order of writes

 One method is to use a global sequencer to sequence the write
operations of all nodes

Write update

Has valid copy of data
block after write
operation

Client
node

Nodes have valid copies of data before
& after write operation

1. Request block

2. Replicate block

3. Update block

Node-1

Node-2

Node-m

Write update

 Intended modification of each write operation goes to sequencer
which assigns it the next sequence number and multicasts the
modification with this sequence no. to all the nodes where a replica of
the data block to be modified is located (fig. in next slide)

 When a new modification arrives at a node, its sequence number is
verified with next expected one

 If the verification fails, either a modification was missed or received
out of order, in which case it requests the sequencer for a
retransmission of the missing modification

 The write update approach is very expensive for use with loosely
coupled DSMs because it requires a network access on every write
operation and updates all copies of the modified block

Global Sequencer

 Write invalidate updates are done only when required. Hence most
DSM systems use write-invalidate protocol

 In this there is status tag with each block indicating whether the
block is valid, it is shared, read only, writable. Using this status
information, read and write requests are carried out

Client
node

Global
Sequencer

Replica
of data

Modification

Sequenced
modification

Nodes having
replica of data
block

1

2

n

Global Sequencer (Cont’d)

 Using the status information, read and write operations are done
as follows

 Read Request

▪ If local block available, data is valid request is satisfied by the local data

▪ Otherwise the fault handler of the requesting node generates a read fault
and obtains a copy of the block from a node having a valid copy of the
block

 Write request

▪ If there is a local block containing the data and if it is valid and writable, the
request is immediately satisfied

▪ Otherwise fault handler of the requesting node generates a write fault and
obtains valid copy of the block and changes its status to writable

▪ A write fault causes invalidation of all other copies of the block

Write Invalidate

Data Locating in the RMB strategy

 Issues involved are

 Locating the owner of a block

 The owner of a block is the node that owns block namely, the most recent
node to have write access to it

 Keeping track of the nodes that currently have a valid copy of the block

 One of the following Algorithms may be used to address these two
issues

 Broadcasting

 Each node has an owned blocks table (fig. on next slide) and each entry of
this table has Copy-set field that contains a list of nodes that currently have
a valid copy of the corresponding block

 Read Fault

 When Read fault occurs, the faulting node N sends a broadcast read
request on the network to find the owner of the required block

 Owner sends block to node N & adds node N to its copy set

 Write fault

 On write fault, the faulting node sends a broadcast write request on the
network

 Owner of the block relinquishes its ownership to node N and sends block &
copy set to node N

 On receipt of the block, becomes the new owner of the block, and N sends
invalidation message to all nodes in the copy set & initializes copy set to
Null indicating no other copies of block (all are invalidated)

Broadcasting

Node boundary

Copy-set
(changes
dynamically)

Block address
(changes
dynamically)

Entry for each block for
which this node is Current
owner

Node 1

Owned blocks table

Block address
(changes
dynamically)

Entry for each block for
which this node is Current
owner

Node i

Owned blocks table

Copy-set
(changes
dynamically)

Block address
(changes
dynamically)

Entry for each block for
which this node is Current
owner

Node m

Owned blocks table

Copy-set
(changes
dynamically)

Node boundary

 Disadvantages

 The major disadvantage of this algorithm is that it does not scale well

 When a request is broadcast all nodes must process broadcast request
leading to communication bottleneck

 Network latency may also lead to accesses taking long time

Broadcasting

 Similar to NRMB Strategy But the central table has an owner node field
 Read fault

 Server adds N to copy set & returns owner information to N
 Write fault

 Returns both copy set & owner information to N & initializes copy set to contain
only N

 Node N on receiving block from owner, sends invalidate message to copy set

Block address
(changes
dynamically)

Owner node
(changes
dynamically)

Copy-set
(changes
dynamically
)

Contains an entry for each block in the
shared memory space

Node 1

Node i

Node m

Node boundary

Block table

Node boundary

 Centralized Server algorithm

 Extension of centralized server with a block manager on several nodes and
each managing predetermined subset of blocks

 A mapping function is used to map a block to a particular block manager

 When a fault occurs the mapping function is used to locate the block
manager and is processed same as centralized server algorithm

Node boundary

Block
address

Owner
node

Copy-set

Contains entries for a
fixed subset of all

blocks

Node 1

Block table
Block manager

Node boundary

Block
address

Owner
node

Copy-set

Contains entries for a
fixed subset of all

blocks

Node i

Block table
Block manager

Block
address

Owner
node

Copy-set

Contains entries for a
fixed subset of all

blocks

Node m

Block table
Block manager

 Fixed distributed server algorithm

 Dynamic distributed server algorithm

 Works similar to dynamic distributed server algorithm of NRMB strategy

 Each node has block table with an entry for all blocks in the shared
memory space (fig in next slide)

 Each entry in the table has a probable owner field gives the node hint of
the owner of the corresponding block

 It also has a copy set field that has the list of nodes having a valid copy of
the block

 Chain of probable nodes might have to be traversed to reach true owner

 Read fault - Adds N to copy set & sends copy of block to N

 Write fault - Returns both copy set & block to N & deletes its own copy
set. Node N then sends invalidate message to copy set & updates block

Node boundaryNode boundary

Block
address

(remains
fixed)

Probable
Owner

(changes
dynamically)

Copy-set
(changes

dynamically)

Contains
entry for

each block
in the

Shared
memory

space

Node 1

Block table

An entry only if
this node is the
true owner of

the
corresponding

block

Block
address

(remains
fixed)

Probable
Owner

(changes
dynamically)

Copy-set
(changes

dynamically)

Contains
entry for

each block
in the

Shared
memory

space

Node i

Block table

Block
address

(remains
fixed)

Probable
Owner

(changes
dynamically)

Copy-set
(changes

dynamically)

Contains
entry for

each block
in the

Shared
memory

space

Node m

Block table

An entry only if
this node is the
true owner of

the
corresponding

block

An entry only if
this node is the
true owner of

the
corresponding

block

Dynamic distributed server algorithm

Replicated, Nonmigrating Blocks

 A shared memory block may be replicated at multiple nodes of the
system, but the location of each replica is fixed

 A read / write access to a memory address is carried out by sending the
access request to one of the nodes having a replica of the block
containing the memory address

 All replicas of a block are sequential consistent by the use of Write-
update protocol and a global sequencer

 Data locating characteristics

 The location of replica is fixed

 All replicas are kept consistent

 Read request serviced by any node having replica of block.

 All write request are sent to global sequencer to ensure sequential
consistency. Sequencer multicasts modification with sequence number to all
nodes of replica set.

Node boundary

Replica
node(remains
fixed)

Block
address(remain
s fixed)

Contains an entry for each
block in the shared memory

space

Node 1

Owned blocks table

Block
address(remains
fixed)

Node i

Owned blocks table

Replica
node(remains
fixed)

Block
address(remains
fixed)

Node m

Owned blocks table

Replica
node(remains
fixed)

Node boundary

Block
address(rem
ains fixed)

Replica
Set(remains
fixed)

Sequence number
incremented for
each new
modification in the
block

Sequence table Centralized Sequencer

Replicated, Nonmigrating Blocks (Cont’d)

Contains an entry for each
block in the shared memory

space

Contains an entry for each
block in the shared memory

space

Contains an entry for each
block in the shared memory

space

 The block table of a node has an entry for each block in the shared
memory

 The sequence table also has an entry for each block in the shared
memory space

 Each entry in the sequence table has three fields – a field
containing the block address, a replica set field containing a list of
nodes having a replica of the block, and a sequence number field
that is incremented by 1 for every new modification performed on
the block

Replicated, Nonmigrating Blocks (Cont’d)

 For performing a read operation on a block, the replica location of the block is
extracted from the local block table and the read request is directly sent to
that node

 A write operation on a block is sent to the sequencer
 The sequencer assigns the next sequence number to the requested

modification
 It then multicasts the modification with the sequence number to all the

nodes listed in replica list field of entry for the block
 The write operations are performed at each node in sequence number order
 Note to prevent all read operations on a block getting service by a same

replica node, as for as practicable, the block table of different nodes should
have different replica locations in the entry corresponding to the block

 This will help in evenly distributing read operations on the same block
emerging from different nodes

Replicated, Nonmigrating Blocks (Cont’d)

MUNIN DSM-
THE RELEASE CONSISTENCY

MODEL

MUNIN : Release Consistent DSM

 The release consistent is also promising and attractive for use in DSM
systems

 Hence, as a case study let us consider Munin system based on release
consistency architecture

 Structure of Shared Memory Space

 Shared memory space of Munin is structured as a collection of shared
variables including program data structures

 Shared variables are declared with keyword shared so that compiler can
recognize them

 A programmer can annotate shared variable with one of the standard
annotation types (annotation types discussed later)

 Implementation of Release Consistency

 In the discussion of release consistency applications we have seen that
they must be modeled around critical sections

 Therefore DSM system that supports release consistency must have
mechanisms and programming language constructs for critical sections

 Munin provides two such synchronization mechanisms namely a locking
mechanism and barrier mechanism

 Lock mechanism uses lock synchronization variables with acquireLock and
releaseLock as its primitives for accessing these variables

 The acquireLock primitive with a lock variable as its parameter is executed
by a process to enter a critical section and releaseLock primitive with the
same lock variable as its parameter is executed by the process to exit from
the critical section

MUNIN : Release Consistent DSM (Cont’d)

 To ensure release consistency, write operations on shared variables must
be performed only within critical sections

 But read operations of shared variables can be done inside or outside a
critical section

 Modifications done to shared variables within critical sections are sent to
other nodes having a replica of the shared variable only when the process
making update exits from the critical section

 Whether the lock is on local or remote node, if it is free it is granted to the
requesting process, else it is added to end of the queue of processes
waiting to acquire a lock variable

 When the present owner releases the lock, it is given to next process in
queue

MUNIN : Release Consistent DSM (Cont’d)

 The Barrier mechanism uses barrier synchronization variables with a
waitAtBarrier primitive for accessing these variables

 Barriers are implemented by using centralized barrier server
mechanism

MUNIN : Release Consistent DSM (Cont’d)

 For further improvement in performance, the Munin defines several
standard annotations for shared variables and uses a different
consistency protocol for each type that is most suitable for that type

 i.e., the consistency protocols in this approach are applied at the
granularity of individual data items

 The standard annotations and consistency protocol for each type of
variables are as follows

Annotations for Shared Variable

 Read only

 Shared data variables annotated as read only are immutable data items

 These variable are read but never written after initialization and hence the
question of consistency does not arise

 As these variable are never modified, their average read cost can be
reduced drastically by freely replicating them on all nodes from where
they are accessed without consistency problem to reduce the cost of
communication

 When reference to such a variable causes a network page fault, the page
having the variable is copied to the faulting node from one of the nodes
already having the copy of the page

 Read only variable are protected by MMU hardware and an attempt to
write to such a variable causes a fatal error

Annotations for Shared Variable (Cont’d)

Annotations for Shared Variable (Cont’d)

 Migratory

 Shared variables that are accessed in phases, where each phase
corresponds to a series of accesses by a single process can be annotated as
migratory variables

 The locking mechanism is used to keep migratory variables consistent

 These are protected by lock synchronization variables and are used within
critical sections

 To access a migratory variable, a process first acquires a lock for the
variable for some time, and then releases the lock, when it has finished
using it

 At a time, the system allows only a single process to acquire a lock for
migratory variable

 If a page fault occurs while waiting for lock for a migratory variable, the
page is migrated to the faulting node from the node that is its current
owner

 NRMB strategy used in this case. i.e., pages migrate from one node to
another on a demand basis, but pages are not replicated

 Hence only one copy of the page containing migratory variable exists in
the system

Annotations for Shared Variable (Cont’d)

 Write Shared

 A programmer may use this annotation with a shared variable to
indicate to the system that the variable is updated concurrently by
multiple processes, but the different processes do not update the
same parts of the variable

 For example in a matrix, different processes may be updating
concurrently different rows / columns elements, with each process
updating only the elements of one row/column

 Munin avoids false sharing problem of write shared variable by
allowing them to be concurrently updated by multiple processes

 A write shared variable is replicated on all nodes where a process
sharing is located, i.e., when access to such a variable causes a
network page fault to occur, the page having the variable is copied in
to the faulting node from one of its current nodes

Annotations for Shared Variable (Cont’d)

 If the access is write access, the system first makes a copy of the page
(called twin page), then updates original page

 When the page is released, the system performs a word-by-word
comparison of the original page and twin page and sends the difference to
all the nodes having a replica of the page

 When a node receives the differences of the modified page, the system
checks if the local copy of the page was also modified.

 If not local copy of the page is updated by incorporating the received
differences in it

Annotations for Shared Variable (Cont’d)

 Producer Consumer

 Shared variables written by only one process & read by a fixed set of
processes can be annotated as producer-consumer type

 Munin uses “eager object movement” mechanism for this type of
variable

 In this mechanism a variable is moved from the producer’s node to the
nodes of the consumers in advance of when they are required so that
no network page fault occurs

 The producer may send several updates together by using locking
mechanism, where it acquires a synchronization lock, makes several
updates on the variable and then releases the lock when the variable
or the updates are sent to the nodes of consumer processes

Annotations for Shared Variable (Cont’d)

 Result

 This is just the opposite of producer-consumer variables as they are
written by multiple processes but read by only one process

 Different process write to different parts of the variable that do not
conflict

 Variable is read only when all parts written

 For example in an application there may be different “worker” processes
to generate and fill the elements of each row/column of a matrix and once
the matrix is complete, it may be used by the “master” process for further
processing

Annotations for Shared Variable (Cont’d)

 Reduction

 Shared variable that must be atomically modified may be annotated
to be of reduction type

 For example in parallel computation application, a global minimum
must be automatically fetched and modified if it is greater than the
local minimum

 In Munin the reduction variables are always modified, by being locked
Acquire lock, read, update, release lock

 For better performance, a reduction variable is stored at a fixed owner
that receives updates to the variable from other processes,
synchronizes the updates received from different processes, performs
the updates on the variable and propagates the updated variable to its
replica locations

Annotations for Shared Variable (Cont’d)

 Conventional

 Shared variables which do not fall into any of the above class are
conventional variables

 Release consistency of Munin is used to maintain the consistency of
replicated conventional variables

 The invalidation protocol is used in this case to ensure that no process
ever reads a stale version of a conventional variable

Annotations for Shared Variable (Cont’d)

REPLACEMENT
STRATEGY

Replacement Strategy

 In DSM systems that allow shared-memory blocks to be dynamically
migrated/replicated the following issues need to be addressed when
the available space for caching shared data fills up at a node

 Which block should be replaced to make space for a newly required block

 Where should the replaced block be placed

 Which block to replace?

 This has been studied extensively in shared memory multiprocessor
systems they fall into two categories

 Usage based versus non-usage based (LRU/ FIFO)

▪ Usage based algorithms keep track of the history of usage of a cache line or
page and use this information to make replacement decisions

▪ LRU fall in this category

▪ Non usage based algorithms are like FIFO and Rand

 Fixed space versus variable cache space

▪ Fixed space algorithms assume that the cache size is
fixed while the variable-space algorithms are based on
the assumption that the cache size can be changed
dynamically depending on the requirement

▪ Usage based-fixed space algorithms are more suitable for
DSM when compared to variable-space algorithms

▪ However DSM uses some type of priority mechanism
instead of simple LRU system

Replacement Strategy (Cont’d)

 In DSM each memory block of node is classified into one of the
following five types

 Unused - free memory block that is not currently being used

 Nil - Invalidated block

 Read-only – Node has read access right only

 Read-owned - owner of the Node with only read access right

 Writable – Node has write access permission

 Based on these the following replacement priority is used

 Both unused and nil blocks have the highest replacement priority

▪ The nil block may have been recently accessed block, i.e., the reason
simple LRU is not sufficient

▪ i.e., they will be replaced first if a block is required

Replacement Strategy (Cont’d)

 The read only blocks have the next replacement priority as the
owner of the block will a copy of this block

 Read-owned and writeable blocks for which replica(s) exist on some
other node have the next replacement priority as it is sufficient to
pass the ownership to one of replica nodes

 Read-owned and writable block for which only this node has a copy
have the lowest priority as it involves transfer of the ownership and
the block to some other node

 Where to place a replaced block

 Once memory block is selected for replacement, it should be
ensured that if there is some useful information in the block, it
should not be lost

 For example read only or nil data can be discarded without the loss
of data

Replacement Strategy (Cont’d)

 However, discarding read-owned or writeable block can lead to loss of
data

 Hence care must be taken to store them some where before discarding
them

 Using secondary store (local disk): the block is simply transferred to the
local disk

 Using the memory space of other nodes may be more efficient

Replacement Strategy (Cont’d)

THRASHING

Thrashing

 Thrashing is said to occur when the system spends a large amount
of time transferring shared data blocks from one node to another,
compared to time spent doing the useful work of executing
application processes

 Thrashing can occur in the following situations

 When interleaved data accesses made by processes on two or more
nodes causes a data block to move back and forth from one node to
another in quick succession (ping-pong effect)

 When blocks with read-only permission are repeatedly invalidated
soon after they are replicated

▪ These situations indicate poor (node) locality in reference

 If not handled properly, thrashing degrades system performance
considerably

 Providing application-controlled locks

▪ Locking data to prevent other nodes from accessing data for short period of
time can reduce thrashing

▪ An application controlled lock can be associated with each data block to
implement this method

 Nailing a block to a node for a minimum amount of time t

▪ Disallow a block to be taken away from a node until a minimum amount of
time t elapses after it has been allocated to the node

▪ The time t can be fixed statically or dynamically chosen on the basis of past
access patterns

▪ The main drawback of this scheme is to fix the value for t

▪ One way is to tune the value of t based on past access pattern of the block

▪ Another factor that may be used for deciding the value of t for a block is the
length of the queue of processes waiting to access that block

Thrashing (Cont’d)

 Tailoring the coherence algorithm to the shared data usage patterns

▪ Thrashing can also be minimized by using different coherence protocols
for shared data having different characteristics

▪ e.g., The coherence protocol used in Munin for write shared variables
avoids the false sharing problem, which ultimately results in the
avoidance of thrashing

Thrashing (Cont’d)

University Questions

 Explain various data locating strategies used in DSM system
that uses replicated migration blocks (RMB) strategy.

 Thrashing (Short Note)
 Differentiate between Strong Consistency Model and Casual

Consistency Model.
 Name different consistency models. How is the sequential

consistency model implemented in DSM?
 False Sharing (Short Note)
 Explain the types of strong consistency models. How they

differ from weak consistency models?
 How does a centralized manager algorithm finds data location

in Distributed Shared Memory(DSM)?
 What is Memory Consistency in a Distributed Shared

Memory(DSM)?
 What is difference between sequential consistency and release

consistency? State their relative advantages?
 Release Consistency (Short Note)

 What is false sharing? When is it likely to occur? Can it be completely
eliminated?

 Give relative advantages and disadvantages of using large block size
and small block size in the design of block-based Distributed Memory
System.

 Differentiate between Strong Consistency and Casual Consistency
Model.

 Differentiate between PRAM Consistency model and Processor
Consistency Model.

 What are the differences between Replication and Caching.
 Explain various data locating strategies used in DSM system that uses

Non-replicated migration blocks (NRMB) strategy.
 Compare and contrast replicated migrating and non migrating block

strategies used in DSM systems.
 Munin DSM (Short Note)
 Explain different annotations for shared variables in Munin DSM.

