
CLOCK

SYNCHRONIZATION

 Every computing system needs a timer mechanism called a
computer clock, to keep track of current time, accounting
purposes such as time spent on a process, CPU utilization,
Disk I/O etc.

 In a distributed system an application may have processes
that concurrently run on multiple nodes of the system

 For correct results several such distributed applications
require that the clocks of the nodes are synchronized with
each other

 A distributed on-line reservation system to be fair, the
only remaining seat booked almost simultaneously from
two different nodes of the system should be offered to
the one who booked first, even if the time difference
between the two are small

 Consider the situation in the next slide

Clock synchronization

 When each machine has its own clock, an event that

occurred after another event may nevertheless be assigned

an earlier time

Clock synchronization (Cont’d)

 The computer timer is usually a precisely machined quartz crystal,
when kept under tension, quartz crystals oscillate at a well defined
frequency that depends on the kind of crystal, how it is cut and the
amount of tension

 Associated with each crystal are two registers: a counter and a
holding register

 Each oscillation of the crystal decrements the counter by one

 When the counter gets to zero, an interrupt called clock tick is
generated and the counter is reloaded from the holding register
content

 The value in the holding register is taken in such a way that 60 clock
ticks occur in every second

 Though the crystal oscillates at fixed frequency, slight differences in
crystals result in difference in the rate at which two clocks run, which
leads to drift in clock.

 Secondly each crystal has a built in error in oscillation depending on
various environmental factors

Physical Clocks

 Synchronization of computer clocks with real time or

external clocks:

 This type of synchronization is mainly required for real time

applications

 External clock synchronization allows the system to exchange

information about the timing of events with an external source.

 An external time source often used for synchronizing computer

clocks with real time is the Coordinated Universal Time (UTC)

 The UTC is an international standard

 Many standard bodies disseminate UTC signals by radio,

telephone and satellite

 Commercial devices known as time providers are available to

receive and interpret these signals

Requirement for Clock Synchronization

 Computers equipped with time provider devices can

synchronize their clocks with these time signals

 Another method is mutual (or internal) synchronization of

clocks of different nodes of the system

 This type of synchronization is mainly required for those

applications that require a consistent view of time across all

nodes of a distributed system as well as for time duration of

distributed activities

 Note that externally synchronized clocks are also internally

synchronized

 Converse is not true as they might drift arbitrarily far from

external time over the passage of time

Clock synchronization (Cont’d)

Issues in Clock synchronization
 We have seen that no two clocks can be perfectly

synchronized

 In reality, two clocks are said to be synchronized, if the

difference in the time value is less than a Specified constant.

 The difference in time values of two clocks is called clock

skew

 Clock synchronization requires each node to read the other

nodes’ clock values

 The actual method used to read other clocks differs from

one algorithm to another

 Errors occur mainly because of unpredictable communication

delays during message passing used to deliver a clock signal or

clock message from one node to another

 It is almost impossible to obtain the upper bound to delay.

 Another important issue in clock synchronization is that time must

not run backwards, this may cause serious problems such as

repetition of certain operations that may be hazardous in many

cases

 One way to do this is to make the interrupt routine in clock more

intelligent

 For example, this can be done by increasing the timer holding

counter in the clock oscillator to a new higher value so that

interrupt is generated slower for given period of time, and that

the synchronization is done smoothly but over a period of time

Issues in Clock synchronization (Cont’d)

SYNCHRONIZATION

ALGORITHMS

Synchronization algorithms

Active Time

Server

Passive Time

Server

Centralized Algorithms Distributed Algorithms

Global

Averaging

Local Averaging

Synchronization algorithms

Centralized Algorithms
 In centralized algorithm one node has a real-time receiver

 This node is usually called time server node, and the clock on this

node is regarded as correct and used as the reference time

 The goal of the algorithm is to keep the clocks of all other nodes

synchronized with the clock time of the time server node

 Keep the clocks of all nodes synchronized with the clock time of the

time server node, a real time receiver

 Passive time server centralized algorithm

 Active time server centralized algorithm

 Both these algorithms suffer from the drawbacks

 Single point of failure

 Poor scalability

Passive Time Server
Centralized

 In this method each node periodically sends message
(“time=?”) to the time server

 Server quickly responds by sending (“time = T”) where T is the
current time on the time server (refer the slide on the next
page)

 As a first approximation, when the sender receives the reply, it
can adjust its clock to T

 This has two problem, one major, which we have discussed
earlier that time can not run backwards and hence the change
has to be introduced gradually by changing interrupt timer as
discussed earlier

 The minor problem is that it takes non zero time for the server’s
reply to get back to the sender, it may be even large if there is a
network problem

 It is simple enough for the sender to record accurately the

interval between sending the message T0 and receiving reply

T1 measured using the same clock

 Getting the current time from a time server

Cristian’s Algorithm

 In the absence of any other information, the best estimate, after
receiving message client adjusts time to

 T+ (T1-T0)/2; message propagation time one way is (T1-T0)/2)

 This estimate can be further improved if it is known approximately
how long it takes the server to handle the interrupt(request) and
process the incoming message

 T+ (T1-T0- I)/2, I is time taken by time server to handle time request
message

 Cristian suggested making multiple measurements of T1-T0

 Those values which exceed a threshold are discarded and an
average of the rest are used to estimate the correction factor

 This will give good estimate of the average network congestion
delays, however, their frequency itself will add to the network load

Cristian’s Algorithm (Cont’d)

Active Time Server Centralized

 Time server node periodically broadcasts clock time (“time=T”)

 The other nodes receive the broadcast message and use the clock

time in the message for correcting their own clocks

 Each node has a prior knowledge of the approximate time for the

propagation (Ta)

 Client adjusts time to T + Ta

 Drawbacks

 It is not fault tolerant in case message reaches too late at a node, its

clock will be adjusted to wrong value

 Requires broadcast facility to be supported by the network

 Drawbacks overcome by Berkeley algorithm

Berkeley Algorithm

 It is used for internal clock synchronization of a group

 The time server (actually a time daemon) is active, polling
every machine from time to time to ask what time it is there
(“time=?”)

 Each computer in the group sends its clock value to the
server

 Server has prior knowledge of propagation time from
different node to server

 Based on this knowledge, it first readjusts the clock values of
the reply messages

 It then takes fault tolerant average of the clock values of all
computers (including its own)

 To take this fault tolerant average, the time server chooses a
subset of all clock values that do not differ from one another
by more than a specified amount, and the average is taken
only from the clock values in this subset

 This approach eliminates readings from unreliable clocks,
whose clock values could have significant adverse effect if
an ordinary average is taken

 The calculated average is the current time to which all the
clocks should be readjusted

 The time server readjusts its own clock to this value

 However, instead of sending the calculated time back to the
other computers, the time server sends the amount by which
each individual computer’s clock requires adjustment

Berkeley Algorithm (Cont’d)

1. The time daemon asks all the other machines for their clock values

2. The machines answer

3. The time daemon tells everyone how to adjust their clock

Berkeley Algorithm (Cont’d)

 Remember that external synchronization also results in internal

synchronization

 i.e., if each node’s clock is independently synchronized with real

time, all the clocks in system will remain mutually synchronized

 Hence a simple solution is to equip each node of the system with

real time receiver so that each node’s clock is independently

synchronized with real time

 Separate internal synchronization is not required in this

approach

 However in reality, due to the inherent inaccuracy in the real

time clocks, different clocks produce different time

 Hence internal synchronization is performed for better accuracy

Distributed Algorithms

Distributed Algorithms (Cont’d)

 Global averaging distributed algorithms

 The clock process at each node broadcasts its local time in the form of
special “resync” message when its local time equals T0+iR for some
integer i, where T0 is a fixed time in the past agreed upon by all nodes
and R is the system parameter that depends on such factors like total
number of nodes in the system, max allowable drift rate and so on

 All broadcasts do not happen simultaneously due to difference in
local clocks running at slightly different rates

 Broadcasting node waits for time T, where T is the parameter to be
determined by the algorithm and during which it collects “resync”
messages by other nodes & records time of receipt according to its
own clock

 At the end of waiting time, it estimates the skew of its clock with
respect to other nodes on the basis of times at which it received
“resync” messages

Global Averaging Distributed Algorithms
 Calculate fault tolerant average of estimated skews & use it to correct its

own local clock before restart of next “resync” interval

 The global averaging algorithms differ mainly in the manner in which

the fault-tolerant average of the estimated skews is calculated

 Two commonly used algorithms are:

 The simplest algorithm is to take the average of the estimated skews

and use it as the correction of the local clock

 However to limit the effect of faulty clocks on the average value, the

estimated skews greater than the threshold are set to zero before

computing the average of the estimated skews

 In another algorithm each node limits the impact of faulty clocks by

discarding m highest and m lowest estimates skews and then

calculating average of the remaining skews

 The value of m is based on total number of clocks (nodes)

Localized Averaging Distributed

Algorithms

 Global averaging algorithms do not scale well because they require

the network to support broadcast facility and also because large

amount message traffic generated

 Hence they are suitable for small networks, especially those that have

fully connected topology (in which each node has direct

communication link to every other node)

 The localized averaging algorithms attempt to overcome these

drawbacks of the global averaging algorithms

 In this approach nodes of a DS are logically arranged in some kind of

pattern, such as ring or a grid

 Periodically, each node exchanges its clock time with its neighbors in

the ring, grid etc

 It then sets its clock time to the average of its own clock time and the

clock time of its neighbors

 Two popular services for synchronizing clocks and for

providing timing information over a wide variety of inter

connected networks are the Distributed Time Service (DTS)

and Network Time Protocol (NTP)

 NTP is used in Internet for clock synchronization

Localized Averaging Distributed

Algorithms

Numerical

A distributed system has 3 nodes N1, N2
and N3 each having its own clock. The
clocks at N1, N2 and N3 tick 495, 500 and
505 times per millisecond. The system
uses external synchronization
mechanism in which all nodes receive
real time every 20 seconds from external
file source and readjust their clocks.
What is the maximum clock skew that will
occur.

No. of clock ticks in 1 sec
N1 – 495,000
N2 – 500,000
N3 – 505,000
Maximum skew in 1 sec = 10,000

ticks(505,000-495,000)
Thus, skew in 20 sec = 2,00,000
Assuming the average time is 500,000 ticks in

1 sec.
Then 2,00,000 ticks leads to skew of =

2,00,000/500,000 = 0.4 sec

Numerical

A distributed system has 3 nodes N1, N2
and N3 each having its own clock. The
clocks at N1, N2 and N3 tick 600, 750 and
820 times per millisecond. The system
uses external synchronization
mechanism in which all nodes receive
real time every 30 seconds from external
file source and readjust their clocks.
What is the maximum clock skew that will
occur.

No. of clock ticks in I sec
N1 – 600,000
N2 – 750,000
N3 – 820,000
Maximum skew in 1 sec = 220,000

ticks(820,000-600,000)
Thus, skew in 30 sec = 6600000
Assuming the average time is 723333

approx ticks in 1 sec.
Then skew = 6600000/723333 = 9.12 sec

approx

EVENT

ORDERING

 Lamport Observed that, for a certain class of algorithms, it is the

internal consistency of the clocks that matters, not whether they

are particularly close to the real time

 It is sufficient to ensure that all events that occur in a DS be totally

ordered in a manner that is consistent with an observed behavior

 If two processes do not interact, it is not necessary to keep their

clocks synchronized but rather that they agree on the order in

which events occur

 To synchronize logical clocks, Lamport defined a new relation

called happened before and introduced the concept of logical

clocks for ordering of events based on happened before relation

Event Ordering

Happened Before Relation

 The happened-before relation on a set of events satisfy

the following conditions:

 If a and b are events in the same process, and a occurs before b then

a→ b is true

 If a is the event of a message being sent by one process, and b is the

event of the message being received by another process, then a →

b is also true and this condition holds from the law of causality

because a receiver can not receive until the sender has sent it

 If a → b and b → c, then a → c (transitive relation)

 Note that in a physically meaningful system an event cannot

occur before itself, i.e., a → a not true for any event a

 Concurrent Events - events a and b are concurrent (a||b) if

neither a → b nor b → a is true; i.e., they are not related by

the happened- before relation

 i.e., The two events are concurrent if neither can causally

affect the other

 Because of this reason happened before relation is some

times referred to as the relationship of causal ordering

Happened Before Relation (Cont’d)

Process P1 Process P2 Process P3

e10

e11

e12

e13

e22

e30

e31

e32

e21

e20

e23

e24
T
im

e

In this diagram vertical line denotes process, each dot on the

vertical line denote an event in the corresponding process and

line denotes a message transfer from one process to another in

the direction of the arrow

Space-time Diagram for three process

Space-time Diagram for three process

 A space-time diagram (fig. on previous slide) is used to

illustrate the concepts of happened-before relation and

concurrent events

 For two events a and b, a → b is true if and only if, there

exists a path from a to b by moving forward in time along the

process and message lines in the direction of the arrows

Causally ordered events

(e10→e11), (e20 →e24), (e11 →e23), (e21 →e13)

(e30 →e24) (since e30 →e22 & e22 →e24)

(e11 →e32) (since e11 →e23, e23 →e24 & e24 →e32)

 Two events a and b are concurrent if and only if, no path

exists either from a to b or from b to a

Therefore, the Concurrent events in the example are

(e12, e20), (e21,e30), (e10,e30), (e12,e32), (e13,e22)

 What we need is a way of measuring time such that for every

event a, we can assign it a time value C(a) on which

consistency can be maintained.

Space-time Diagram for three process

 List all pairs of concurrent events according to

happened before relation

Question

Process

P1

Process

P2

e1

e2

e3

e4

e7

e6

e5

e8

e9
T

im
e

Causally ordered events –(e1→e2),
(e2→e3), (e3→e4), (e5→e6), (e6→e7),
(e7→e8), (e8→e9), (e1→e6), (e3→e9),
(e7→e4)

Concurrent events - (e1,e5), (e2,e5),
(e3,e5), (e4,e5), (e2,e6), (e2,e7),
(e2,e8), (e2,e9), (e3,e5), (e3,e6),

(e3,e7), (e3,e8), (e8,e4), (e4,e9)

Process

P1

Process

P2

e1

e2

e3

e4

e7

e6

e5

e8

e9

T
im

e

Logical Clocks
 To determine that an event a happened before an event b,

either a common clock or a set of perfectly synchronized

clocks are needed

 We know that neither of these are available in a distributed

system

 Lamport provided a solution to this problem using logical

clock concept

 The logical clocks concept is a way to associate a timestamp

(which may be simply a number independent of any clock

time) with each system event, so that events that are related to

each other by the happened-before relation (directly or

indirectly) can be properly ordered in that sequence

 Actually the clocks may be implemented by a set of

counters with out any timing mechanism

 The logical clocks of a system can be considered to be

correct if the events of the system that are related to each

other by the happened-before relation can be properly

ordered using these clocks

 Hence, Timestamps assigned to events by logical clocks

must satisfy the following clock condition:

For any two events a and b, if a → b, then C(a) < C(b)

Logical Clocks (Cont’d)

 From the definition of happened-before relation, following

conditions must hold:
C1: if a and b are two events within the same process Pi and a occurs

before b, then Ci(a) < Ci(b)

C2: If a is the sending of a message by process Pi and b is the receipt

of that message by process Pj then Ci(a) <Cj(b)

 In addition to these conditions, which are necessary to

satisfy the clock condition the following condition is

necessary for the correct functioning of the system

C3: A clock Ci associated with a process Pi must always go

forward, never backward

Implementation of Logical
Clocks

Implementation of Logical Clock using

Counters

 As shown in the fig. on next slide, two processes P1 and P2

each have counters C1 and C2 respectively

 These counters act as logical clocks

 Counters initialized to zero & incremented by 1 whenever

an event occurs in that process

 On sending of a message, the process includes the

incremented value of the counter in the message

C1=0

C1=7

C1=4

C1=3

C1=2

C1=6

C1=5

C1=1

C2=0

C1=8

C2=6

C2= 3 5

C2=2

C2=1

e13

e06

e07

e05

e04

e03

e02

e01

e12

e11

e08

e14

Process 1 Process 2

ti
m

e Since 3 is less than

Timestamp 4

Implementation of Logical Clock using Counters

Using Physical Clocks (Cont’d)

1. Two processes each with its clock. They run at

different rates

2. Lamport’s algorithm Corrects the clock

1 2

Time

GLOBAL

STATE

Global State
 Sometimes, it is necessary to collect the current status

of a distributed computation, which is known as the

global state(eg., to see whether a system is in deadlock

or to apply checkpoints).

 The global state of a DS actually consists of local state

of each process, together with the messages which are

in transit.

 A local state may consist of only those records which

forms part of database excluding temporary records.

 An effective way of recording global state is distributed

snapshot(reflects consistent state of a system).

 Snapshot should not record inconsistent messages,

such as, recording of message receipt but not the

corresponding message sending.

MUTUAL

EXCLUSION

Mutual Exclusion

 There are several resources in a system that must not be

used simultaneously by multiple processes, if the program

operation is to be correct

 For example a file may not be updated by multiple

processes

 Hence, exclusive access to such shared resource by a

process must be ensured

 This exclusiveness of access is called mutual exclusion

between processes

 The sections program that require exclusive access to

shared resources are referred to as critical sections

 Conditions to be satisfied by mutual exclusion:

 Mutual exclusion - Given a shared resource accessed by

multiple concurrent processes, at any time only one process

should access the resource

 A process that has been granted the resource must release it

before it can be granted to another process

 No starvation – If every process that is granted resource

eventually releases it, every request will be eventually granted

 In a single processor system mutual exclusion, critical

regions are protected using semaphores, monitors and

similar constructs

 There are three basic approaches discussed here to achieve

mutual exclusion in distributed systems

Mutual Exclusion (Cont’d)

Centralized Approach
 The most straightforward way to achieve mutual exclusion in a

distributed system is to simulate uniprocessor system

 One process is elected as the coordinator

 Coordinator coordinates entry to critical section

 Every process wanting to enter critical section need seek

permission from the coordinator

 If more than one process concurrently seek permission to enter

the same critical section, the coordinator allows only one

process to enter critical section in accordance with some

scheduling algorithm and the remaining processes are put on a

queue

 Ensures no starvation as uses first come, first served policy

Centralized Approach

Initial state

P2

P2P3

P3

Status of request queue

Status after 3

Status after 4

Status after 5

Status after 7

8 Reply

9 Release

P3P1

P2

Pc

5 Release

2 Reply

1 Request
4 Request

3
 R

eq
u

es
t

7
 R

el
ea

se

6
 R

ep
ly

 On completion of the critical region activity, the process immediately

releases the critical region and informs the coordinator accordingly

(fig. on the prev. slide gives the sequence of operation for requests by

3 processes and a process coordinator)

 This algorithm ensures mutual exclusion because at a time only one

process is allowed to enter a critical section

 The main advantage of the system is that it is simple to implement

 Requires only 3 messages per request for critical section – request,

reply, release

 Suffers from usual drawbacks of centralized schemes, namely single

point of failure & performance bottleneck

 Another problem is, the requesting process has no way of knowing

whether it is in the queue or the coordinator has crashed

Centralized Approach (Cont’d)

Distributed Approach

 In the distributed approach, the decision making for mutual

exclusion is distributed across the entire system

 All processes that want to enter the same critical region,

cooperate with each other before reaching a decision on which

process will enter the critical region next

 Ricart & Agrawala’s Algorithm

 When a process wants to enter the CS, it sends a request message

to all other process, and when it receives reply from all processes,

then only it is allowed to enter the CS

 The request message contains following information:

 Process identifier of the process

 Name of critical section that the process wants to enter

 Unique time stamp generated by process for request message

 The decision whether receiving process replies immediately to

a request message or defers its reply is based on three rules:

 If receiver process is itself currently executing in the critical

section, then it queues the message and defers its reply

 If receiver process is neither in the critical section nor is waiting for

its turn to enter its critical section, it immediately sends a reply

 If receiver process itself is waiting to enter critical section, then it

compares its own request timestamp with the timestamp in request

message

 If its own request timestamp is greater than timestamp in request

message, then it sends a reply immediately

 Otherwise, the reply is deferred and queues receives request message

Distributed Approach (Cont’d)

P1

P4

P2

P3

TS=4

T
S

=
6

T
S

=
4

TS=6

Already in CS

(a)

(b)

OK

OK

P3P4

P2
P1

OK

P1

Defer sending reply to

P1 and p2

Queue

P2

Queue

P1

Defer sending a

reply to P1

Distributed Approach (Cont’d)

Exits CS P4 P3

P2

P1

OK
OK

P1

Queue

Enters CS

(c)

P3P4

P2P1
OK

Exits CSEnters CS

(d)

Distributed Approach (Cont’d)

 No. of messages passed becomes the bottleneck with heavy

communication traffic and the requirement that all processes must

participate in a critical section entry request by any process

 All requesting processes have to wait indefinitely for the reply from

the failed system

 A simple modification to the algorithm is instead of remaining silent

by deferring the sending reply message in cases when permission

can not be granted immediately, the receiver sends “permission

denied” reply message to the requesting process and then sends an

OK message when the permission can be granted

 If no reply is received from a system within timeout period, it is

assumed to have crashed by the sending process

 The processes need to know the identity of all other processes in the

system, which makes the dynamic addition and removal of processes

more complex

Drawbacks

Token Passing Approach

 In this method, mutual exclusion is achieved by using a
single token that is circulated among the processes in
system in clockwise or anti-clockwise manner.

 Token is special kind of message that entitles its holder to
enter a critical section

 For fairness, processes in a system are organized in logical
ring as shown in the fig. in next slide

 Ring positions may be allocated in numerical order of
network addresses or some other means

 It is passed from process k to k+1 in point-to-point
messages

 When a process acquires a token from its neighbor, it checks
if it wants to enter a critical region and acts as follows

 If it wants to enter a critical section, it keeps the token,
enters the critical section, does all the work it needs to, and
leaves the region

 After it has exited, it passes the token along the ring

 It is not permitted to enter a second critical region using the
same token, it must wait until it gets the token again

 If it does not want to enter a critical section, it just passes the
token along the region to its neighbor process

 Hence if none of the process is interested in entering a
critical section, the token simply keeps circulating around
the ring

 The correctness of this algorithm is easy to see, so only one
process can actually be in a critical region

Token Passing Approach
(Cont’d)

a) An unordered group of processes on a

network.

b) A logical ring constructed in software.

Token Passing Approach
(Cont’d)

 Since the token circulates among the processes in a well
defined order, starvation can not occur

 Once a process decides it wants to enter the critical region, at
worst it will have to wait for every other process to enter and
leave the critical region

 Drawbacks:

 A process failure in the system causes the logical ring to break

 Then a new ring has to be established to ensure the continued
circulation of the token among other processes

 This requires detection of the failed process and dynamic
reconfiguration of the logical ring

 Detecting dead process is easy, when a neighbor tries to give it the
token but fails

Token Passing Approach
(Cont’d)

 That dead process can be removed from the group and
passes the token to the process after it or next alive process
in the sequence

 When a process becomes alive after recovery, it simply
informs the neighbor previous to it in the ring so that it gets
the token in the next round of circulation

 Lost token

 If token is lost, a new token must be generated

 Must have mechanism to detect & regenerate a lost token

 Designate one of the processes in the ring as monitor process

 Monitor periodically circulates “who has token” message on the
ring

 The message rotates round the ring from one process to another

Token Passing Approach (Cont’d)

 All the processes pass this message to their neighbor process,

except the process that has the token

 This process, on receipt of the message, writes its identifier in a

special field before passing it to its neighbor

 On return of the message, monitor checks process identifier field.

If empty generate new token & passes it around the ring

 Multiple monitors can be used to take care of the failure of the

monitor

 An election among them can decide who generates the lost token

Token Passing Approach (Cont’d)

ELECTION

ALGORITHMS

 Several distributed algorithms require that there be a
coordinator process in the system that performs some type
of coordination activity needed for the smooth running of
other processes in the system

 For example, Coordinator for centralized algorithm, monitor
process in Token ring approach for mutual exclusion

 Since all other processes in the system has to interact with
the coordinator, they all must agree on who the coordinator
is

 If the coordinator process fails for whatever reason, a new
coordinator process must be selected to take up the job of
the failed coordinator

 Election algorithms are meant for electing a coordinator
process from among the currently running processes in such
a manner that at any instance of time there is a single
coordinator for all processes in the system

Election Algorithm

 One of the parameters commonly selected for election

algorithm is the priority number of the process

 Election algorithms based on following assumptions:

 Each process has unique priority number

 Whenever an election is held, the process having highest

priority among currently active processes is elected as the

coordinator

 On recovery, a failed process can take appropriate actions to

rejoin the set of active processes

 Therefore, whenever initiated, an election algorithm

basically finds out which of the currently active processes

has the highest priority number and informs this to all other

active processes

Election Algorithm (Cont’d)

Bully Algorithm

 This algorithm was proposed by Garcia – Molina in 1982

 It assumes that every process knows priority of every other

process in the system

 But what the processes do not know is which ones are

currently up and which ones are currently down

 When a process Pi sends a request message to the

coordinator and does not receive a reply within a fixed time

period, it assume that the coordinator has failed

 Pi, then initiates an election by sending an election message to

every process having priority higher than itself

 If Pi does not receive any response to its election message within a

fixed timeout period, it assumes that among the currently active

processes it is the one with the highest priority number

 Hence, it takes up job of the coordinator & sends message (let us

call it the coordinator message) to all processes with lower priority

number than itself, informing that from now on it being new

coordinator

 When a process Pj receives an election message from a process

having a lower priority than itself, it sends a response message

(say alive message) to the sender informing that it is alive and will

take over the election activity

 The process Pi does not take any further action and just waits to

receive the final result (coordinator message) from the new

coordinator of final result of the election it initiated

Bully Algorithm (Cont’d)

 Now Pj holds an election, if it is not already holding one by
repeating the above process

 In this way, the election activity gradually move on to the
process that has the highest priority number among the
currently active processes and eventually wins the election
and becomes new coordinator

 As part of the recovery action, this method required that a
failed process (say Pk) must initiate an election on recovery

 If the current coordinator’s priority no is higher than that of
Pk then the current coordinator will win the election initiated
by Pk and will continue to be the coordinator

 On the other hand if Pk’s priority no is higher than that of
current coordinator, it will not receive any response to its
election message

Bully Algorithm (Cont’d)

 So it winds up the election and takes over the coordinator’s
job from the current coordinator by informing all the
processes with lower priority number that it is the new
coordinator from now on

 Hence active processors with the highest priority always win
the election

 Therefore the algorithm is called Bully Algorithm as the
process with the higher priority always forces its way to
become the coordinator

 It may also be noted here that if the processes having
highest priority number recovers after a failure, it does not
initiate an election because it knows from its list of priority
numbers that all other processes have lower priority
numbers than its own

Bully Algorithm (Cont’d)

 Hence on recovery it just sends a coordinator message to all other
processes and bullies the current coordinator into submission

 Let us new see the working of this algorithm with an example

 The group consist of 8 processes numbered 0 to 7 with process 7 as
the coordinator

 Suppose process 7 just crashes

 process 4 notices it first, so it sends an election message to all the
processes higher than it, namely 5, 6 and 7

 Processes 5 and 6 respond with OK, as shown in figure in the next
slide

 Process 5 and 6 hold election and 6 says OK and takes over
election

 At this time process 6 knows that 7 is dead as it does not get
response for its election message and it is the winner

Bully Algorithm (Cont’d)

 Suppose now process 7 recovers from the crash, and it

knows that it is the process with the highest priority number,

it sends a coordinator message to all processes and elects

itself as the new coordinator

Bully Algorithm (Cont’d)

Ring Algorithm

 Another election algorithm is based on the use of ring concept

 It is assumed that all the processes in the system are physically

or logically organized in a ring so that each process knows who

its successor is.

 The ring is unidirectional in the sense that all the messages

related to the election algorithm are always passed only in one

direction (clockwise / anticlockwise)

 Every process in the system knows the structure of the ring, so

that while trying to circulate a message over the ring, if the

successor of the sender process is down, the sender can skip

over the successor, or the one after that, until an active member

is located

 When a process say Pi sends a request message to the current

coordinator and does not receive a reply within the fixed timeout

period, it assumes that the coordinator has crashed

 Hence, it initiates an election by sending an election message to its

successor (actually to the first successor that is currently active)

 This message contains the priority number of the process Pi

 On receiving the election message, the successor appends its own

priority number to message, making itself a candidate to be elected

as coordinator and passes on the next active member in the ring

 In this manner the election message circulates the ring from one

active process to another and eventually returns back to Pi

 It recognizes it as its own message by the first priority as its priority

Ring Algorithm (Cont’d)

 When the process Pi receives its own election message, the

message contains the list of priority numbers of all processes that

are currently active

 Therefore from this list, it elects the process having the highest

priority number as the new coordinator

 It then circulates a coordinator message over the ring to inform all

the other active process who the new coordinator is

 When the coordinator message comes back to process Pi after

completing its one round along the ring, it is removed by process

Pi

 When the process Pj recovers from failure, it creates an enquiry

message and sends it to its successor

 The message contains identity of process Pj

Ring Algorithm (Cont’d)

 If the successor is not the coordinator, it simply forwards the

enquiry message to its own successor

 In this way, the enquiry message moves forward along the ring

until it reaches the current coordinator

 On receiving enquiry message, the current coordinator sends a

reply to process Pj informing that it is the current coordinator

 Note that in this algorithm two or more processes may almost

simultaneously discover that the coordinator has crashed and

then each one may circulate an election message over the ring

 Though results in a little waste of network bandwidth, it does

not cause any problem because every process will receive the

same list of active processes and all of them select the same

coordinator

Ring Algorithm (Cont’d)

Comparison of election
algorithms

 In the bully algorithm when the process having lowest

priority detects coordinator failure and initiates an election

in the system having total n processes, altogether n-2

elections are performed one after another for the initiated

one, i.e., all the processes, except the active process with the

high priority and the crashed process

 However in ring topology irrespective of which process

detects failure of the coordinator and initiates an election, an

election always requires 2(n-1) messages i.e., one round for

election message and one round for coordinator message

 In Bully algorithm the failed process has to initiate an

election on recovery

 On the other hand in the ring algorithm, a failed process

does not initiate an election on recovery, but simply

searches for the current coordinator

 In conclusion ring algorithm is more efficient compared

bully algorithm and easier to implement

Comparison of election
algorithms

UNIVERSITY QUESTIONS

 Explain ‘Happened Before’ relations.
 Name various clock synchronization algorithms

used in details. Explain in detail.
 Explain the concept of logical clocks and their

importance in distributed systems.
 A clock of a computer system must never run

backward. Explain how this issue can be handled
in an implementation of logical clocks concepts.

 Election Algorithms (Note)
 Explain bully and Ring Algorithms.
 External synchronization automatically leads to

internal synchronization but converse is not true.
Explain.

