

computer clock, to

purposes such as time spent on a
Disk I/0 etc.

In a distributed system an application may have processes
that concurrently run on multiple nodes of the system

For correct results several such distributed applications
require that the clocks of the nodes are synchronized with

each other /
A distributed on-line reservation system to be fair, the

only remaining seat booked almost simultaneously fr
two different nodes of the system should be offered t
the one who booked first, even if the time differen
between the two are small

Consider the situation in the next slide

Clock synchronization (Cont'd)

Computer on 2145 2146 2147 «— Time according
which compiler v to local clock

runs

™ output.o created

2142 2143 2144 2145 «— Time according

Computer on
to local clock

which editor

runs Y

" output.c created

When each machine has its own clock, an event that
occurred after another event may nevertheless be assigne

an earlier time

gt

frequency that de
amount of tension
AN
Associated with each crystal are two registers: a counte
holding register

Each oscillation of the crystal decrements the counter by one

When the counter gets to zero, an interrupt called clock tick is
generated and the counter is reloaded from the holding register
content

The value in the holding register is taken in such a way that 60 cloc
ticks occur in every second

Though the crystal oscillates at fixed frequency, slight differenc
crystals result in difference in the rate at which two clocks ru
leads to drift in clock.

Secondly each crystal has a built in error in oscillation depending on
various environmental factors

This type of synchronization
applications

External clock synchronization allows the system to exchange
information about the timing of events with an external source.

An external time source often used for synchronizing computer
clocks with real time is the Coordinated Universal Time (UTC)

The UTC is an international standard

Many standard bodies disseminate UTC signals by radio,
telephone and satellite

Commercial devices known as time providers are avdilable to
receive and interpret these signals

Another method is mutua
clocks of different nodes of the system

» This type of synchronization is mainly required for those
applications that require a consistent view of time across all
nodes of a distributed system as well as for time duration of
distributed activities

» Note that externally synchronized clocks are also internally
synchronized

o Converse is not true as they might drift arbitrarily far fro
external time over the passage of time

In reality, two clo
difference in the time value is le

The difference in time values of two clocks is called clock
skew

Clock synchronization requires each node to read the other
nodes’ clock values

The actual method used to read other clocks differs from
one algorithm to another

» It is almost impossible to obtain the upper bound to delay.

Another important issue in clock synchronization is that time must
not run backwards, this may cause serious problems such as

repetition of certain operations that may be hazardous in many
cases

» One way to do this is to make the interrupt routine in clock more
intelligent

For example, this can be done by increasing the timer
counter in the clock oscillator to a new higher value s
interrupt is generated slower for given period of ti
the synchronization is done smoothly but over a period of time

Synchronization algorithms

Synchronization algorithms

K¢

1
la

This node is
node is regarded as coz

The goal of the algorithm is to keep the clocks“'b

synchronized with the clock time of the time server node

Keep the clocks of all nodes synchronized with the clock time of the
time server node, a real time receiver

o Passive time server centralized algorithm /
e Active time server centralized algorithm
Both these algorithms suffer from the drawbacks

e Single point of failure

e Poor scalability

(“time=7?") to the tim

Server quickly responds by sending (‘ t1m
current time on the time server (refer the slide on the nex

page)

As a first approximation, when the sender receives the reply, it
can adjust its clock to T

This has two problem, one major, which we have discussed

earlier that time can not run backwards and hence the chan
has to be introduced gradually by changing interrupt time
discussed earlier

server’s
if there is a

The minor problem is that it takes non zero time for t
reply to get back to the sender, it may be even lar
network problem

Cristian’s Algorithm

It is simple enough for the sender to record accurately the
interval between sending the message T, and receiving reply
T, measured using the same clock

Getting the current time from a time server

Both Tgand Ty are measured with the same clock

Client

Time server

receiving me

T+ (T,-T,)/2; message propagation ti

This estimate can be further improved if it is known approx
how long it takes the server to handle the interrupt(request) and
process the incoming message

T+ (T,-T,- /2,1 is time taken by time server to handle time request
message /
Cristian suggested making multiple measurements of T,-T,

Those values which exceed a threshold are discarded and an
average of the rest are used to estimate the correction factor

This will give good estimate of the average network cong
delays, however, their frequency itself will add to the n

The other nodes receive
time in the message for correcting thei

Each node has a prior knowledge of the approximate time fo
propagation (T,)

Client adjusts time to T + T,

Drawbacks /

o It is not fault tolerant in case message reaches too late at a node,
clock will be adjusted to wrong value

e Requires broadcast facility to be supported by the networ

Drawbacks overcome by Berkeley algorithm

The time server (a
every machine from time to time to
(“time="?")

Each computer in the group sends its clock value to the
server

Server has prior knowledge of propagation time from /

different node to server

Based on this knowledge, it first readjusts the clock value
the reply messages

It then takes fault tolerant average of the clock value
computers (including its own)

‘To take this
subset of all clock values
by more than a specified amount, and the
only from the clock values in this subset

This approach eliminates readings from unreliable clocks,
whose clock values could have significant adverse effect if
an ordinary average is taken

The calculated average is the current time to which all the
clocks should be readjusted

The time server readjusts its own clock to this value

However, instead of sending the calculated time back
other computers, the time server sends the amount
each individual computer’s clock requires adjustment

Berkeley Algorithm (Cont'd

Time daeamon
300 ¥
» ‘_:_aj_._l;oo

(@) (b) (©)

The time daemon asks all the other machines for their clo / es
The machines answer
The time daemon tells everyone how to adjust their clock

synchronization
i.e., if each node’s clock is indepen
time, all the clocks in system will remain mutually sy
Hence a simple solution is to equip each node of the system with
real time receiver so that each node’s clock is independently
synchronized with real time

Separate internal synchronization is not required in this /
approach

However in reality, due to the inherent inaccuracy in the rea
time clocks, different clocks produce different time
Hence internal synchronization is performed for better Acclracy

The clock process at eac rrgs
special “resync” message when its loca eq
integer i, where T is a fixed time in the past agreed up
and R is the system parameter that depends on such factors like tota
number of nodes in the system, max allowable drift rate and so on

All broadcasts do not happen simultaneously due to difference in
local clocks running at slightly different rates

Broadcasting node waits for time T, where T is the parameter to be
determined by the algorithm and during which it collects “resync”
messages by other nodes & records time of receipt according to its
own clock

/

At the end of waiting time, it estimates the skew of its clock wit
respect to other nodes on the basis of times at which it recei
“resync’” messages

The global averaging algorithms
the fault-tolerant average of the estimated skews is

inly i

Two commonly used algorithms are:

The simplest algorithm is to take the average of the estimated skews
and use it as the correction of the local clock

However to limit the effect of faulty clocks on the average value, the
estimated skews greater than the threshold are set to zero before
computing the average of the estimated skews

In another algorithm each node limits the impact of faulty clo
discarding m highest and m lowest estimates skews and the
calculating average of the remaining skews

The value of m is based on total number of clocks (nodes)

the network to sur
amount message traffic geners

Hence they are suitable for small networks, especia
fully connected topology (in which each node has direct
communication link to every other node)

The localized averaging algorithms attempt to overcome these
drawbacks of the global averaging algorithms d/
In this approach nodes of a DS are logically arranged in some kin

pattern, such as ring or a grid

Periodically, each node exchanges its clock time with its neigh
the ring, grid etc

It then sets its clock time to the average of its own clocktime and the
clock time of its neighbors

and Network Time Protocao

- NTP is used in Internet for clock synchronizatio

and N3 each having 1
clocks at N1, N2 and N3 tick 495, 5
505 times per millisecond. The system
uses external synchronization
mechanism in which all nodes receive 1/
real time every 20 seconds from externa

file source and readjust their clocks.
What is the maximum clock skew th
OCCuUr.

NI - y
N2 - 500,000
N3 - 505,000

Maximum skew in 1 sec = 10,000
ticks(505,000-495,000)

Thus, skew 1n 20 sec = 2,00,000

Assuming the average time 1s 500,000 ticks in
1 sec.

Then 2,00,000 ticks leads to skew of = /
2,00,000/500,000 = 0.4 sec

and N3 each having 1
clocks at N1, N2 and N3 tick 600, 7
820 times per millisecond. The system
uses external synchronization
mechanism in which all nodes receive 1/
real time every 30 seconds from externa

file source and readjust their clocks.
What is the maximum clock skew th
OCCuUr.

N2 - 750,0

N3 - 820,000

Maximum skew in 1 sec = 220,000
ticks(820,000-600,000)

Thus, skew in 30 sec = 6600000 /

Assuming the average time 1s 723333
approx ticks in 1 sec. /

Then skew = 6600000/723333 = 9.12 s
appProx

It is sufficient to ensure that a
ordered in a manner that is consistent with an o

« If two processes do not interact, it is not necessary to keep their
clocks synchronized but rather that they agree on the order in

which events occur
» To synchronize logical clocks, Lamport defined a new relation /
called happened before and introduced the concept of logical
clocks for ordering of events based on happened before relati

the following con

o If a and b are events in the same process,and a
a— b istrue

o If a is the event of a message being sent by one process, and b is the
event of the message being received by another process, then a —

b is also true and this condition holds from the law of causality
because a receiver can not receive until the sender has sent it

e Ifa— bandb — c,then a — c (fransitive relation)

Note that in a physically meaningful system an event c
occur before itself, i.e.,a — a not true for any event

the happened-

- 1.e.,The two events are concurrent if n
affect the other

© Because of this reason happened before relation is some
times referred to as the relationship of causal ordering /

€50 ¢

€30

Process P1 Process P2 Process P3

In this diagram vertical line denotes process, each dot o e
vertical line denote an event in the corresponding process and
line denotes a message transfer from one process to another in
the direction of the arrow

illustrate
concurrent events

For two events a and b, a — b is true if and E;nly 1
exists a path from a to b by moving forward in time along the
process and message lines in the direction of the arrows

Causally ordered events
(€10€11)s (€20 ™€24), (€11 —€33), (€21 —€13) /
(€30 —€54) (sIncCe €3y —€p, & €5, —€yy) /
(€1, —e€g;) (SInce e)) —e€y3, €53 €y, & €y —€5;)

Two events a and b are concurrent if and only if, nopath
exists either from a to b or from b to a

event a, we can assign
consistency can be maintained.

el e5 []

Process Process
Pl P2

Causally ordered events

Time

CHF (33!98) (e8!e4) (e4,e9)‘

Process
|

either a co
clocks are needed

We know that neither of these are available in a
system

Lamport provided a solution to this problem using logical

clock concept /
The logical clocks concept is a way to associate a timestam

(which may be simply a number independent of any cloc
time) with each system event, so that events that are rel
each other by the happened-before relation (directly
indirectly) can be properly ordered in that sequen

ordered using these clocks

Hence, Timestamps assigned to events by logical clocks

must satisfy the following clock condition:
For any two events a and b, ifa — b, then C(a) < C(b) /

conditions mu
C,:if a and b are two events within
before b, then C;(a) < C(b)

C2:1If a is the sending of a message by process P, and b is the receip
of that message by process P, then Ci(a) <Cj(b)

satisfy the clock condition the following condition is
necessary for the correct functioning of the system

In addition to these conditions, which are necessary to /

C3: A clock Ci associated with a process P; must always
forward, never backward

- These counters act as lo

- Counters initialized to zero & incremented by
an event occurs in that process

© On sending of a message, the process includes the
incremented value of the counter in the message

Since 3 is
Timestamp 4

C1=4 e04 < /

C1=3 e03 4 f e12 C2=2
“st G e;; G=1

? *11 27
C1=1 e01 <

C;=0 Process 1 Process 2 C2=0/

Using Physical Clocks (Cont'd)

Physical clock times i Physical clock times
Nno corrections were made after corrections (if any)

Process P4 Process

1. Two processes each with its clock. They run at
different rates
2. Lamport’s algorithm Corrects the clock

of a distri
global state(eg., to see w
or to apply checkpoints).
The global state of a DS actually consists of local state
of each process, together with the messages which are
in transit.

A local state may consist of only those records which
forms part of database excluding temporary records.
An effective way of recording global state is distribute
snapshot(reflects consistent state of a system).
Snapshot should not record inconsistent message
such as, recording of message receipt but not th
corresponding message sending.

opera

For example a file may no
processes

Hence, exclusive access to such shared resource by a
process must be ensured

This exclusiveness of access is called mutual exclusion
between processes

The sections program that require exclusive access to
shared resources are referred to as critical sections

o Mutual exclusic
multiple concurrent processe
should access the resource

» A process that has been granted the resource must release it
before it can be granted to another process

o No starvation — If every process that is granted resource
eventually releases it, every request will be eventually granted/

In a single processor system mutual exclusion, critical
regions are protected using semaphores, monitors and
similar constructs

There are three basic approaches discussed here 16 achieve

mutual exclusion in distributed systems

Coordinator coordinates entry to critical section

Every process wanting to enter critical section need seek
permission from the coordinator

If more than one process concurrently seek permission to enter
the same critical section, the coordinator allows only one
process to enter critical section in accordance with some
scheduling algorithm and the remaining processes are
queue

Ensures no starvation as uses first come, first served policy

5 Release

n)
N

J

3 Request
6 Reply
7 Release

‘\
(o]
Py
@
D
QD
wn
D

2 Reply

(P, \ 8 Reply

P
<

T Request

.
N \/ ZRequest

P3 | P2
Status after 4
Status aft

/Status after /7

releases the critical r
(fig. on the prev. slide gives the seque
3 processes and a process coordinator)

Fop

This algorithm ensures mutual exclusion because at a time only one
process is allowed to enter a critical section

Requires only 3 messages per request for critical section — reques

The main advantage of the system is that it is simple to implement
t/
reply, release

Suffers from usual drawbacks of centralized schemes, namely s}
point of failure & performance bottleneck

Another problem is, the requesting process has no way of knowing
whether it is in the queue or the coordinator has crash

All processes that want to enter
cooperate with each other before reaching a de
process will enter the critical region next

Ricart & Agrawala’s Algorithm

» When a process wants to enter the CS, it sends a request message
to all other process, and when it receives reply from all processes;
then only it is allowed to enter the CS

o The request message contains following information:
* Process identifier of the process
- Name of critical section that the process wants to enter

- Unique time stamp generated by process for request

a request messag

4

» If receiver process is itself currently executi
section, then it queues the message and defers its reply

» If receiver process is neither in the critical section nor is waiting for
its turn to enter its critical section, it immediately sends a reply

» If receiver process itself is waiting to enter critical section, then it
compares its own request timestamp with the timestamp in requ
message

- If its own request timestamp is greater than timestamp in reques
message, then it sends a reply immediately

- Otherwise, the reply is deferred and queues receives requeést message

Already in CS

OK ‘@ Defer sending &
Pl ’ reply to P1
(@)

Queue @
P2 | P1
Defer sending reply to

Pl and p2 (b)

Exits CS

C))

All requesting processes !
the failed system

A simple modification to the algorithm is instead of remaining sile
by deferring the sending reply message in cases when permission
can not be granted immediately, the receiver sends “permission
denied” reply message to the requesting process and then sends an
OK message when the permission can be granted

If no reply is received from a system within timeout period, it is
assumed to have crashed by the sending process

The processes need to know the identity of all other processes
system, which makes the dynamic addition and removal of
more complex

single token that is
system in clockwise or anti-

Token is special kind of message that entitles its holder to
enter a critical section

For fairness, processes in a system are organized in logical

ring as shown in the fig. in next slide

Ring positions may be allocated in numerical order of /
network addresses or some other means

It is passed from process k to k+1 in point-to-point

messages

When a process acquires a token from its neighboy; it checks
if it wants to enter a critical region and acts as follows

enters the critica
leaves the region

After it has exited, it passes the token along the rin

It is not permitted to enter a second critical region using the
same token, it must wait until it gets the token again

If it does not want to enter a critical section, it just passes the
token along the region to its neighbor process /

Hence if none of the process is interested in entering a
critical section, the token simply keeps circulating around
the ring

The correctness of this algorithm is easy to see, so o
process can actually be in a critical region

e

Token Passing Approach
(Cont’d)

An unordered group of processes on a
network.

A logical ring constructed in software.

Once a process decides it wants to
worst it will have to wait for every other process
leave the critical region

Drawbacks:

» A process failure in the system causes the logical ring to break /

» Then a new ring has to be established to ensure the continued
circulation of the token among other processes

o This requires detection of the failed process and dynamic
reconfiguration of the logical ring

» Detecting dead process is easy, when a neighbor tries t6 give it the
token but fails

in the sequence

When a process becomes alive after recov :
informs the neighbor previous to it in the ring so that it g
the token in the next round of circulation

If token is lost, a new token must be generated

/

Must have mechanism to detect & regenerate a lost token

Designate one of the processes in the ring as monitor proces

the

Monitor periodically circulates “who has token” message
ring

to another

The message rotates round the ring from one proce

special field before

On return of the message, monitor che
If empty generate new token & passes it around the ring

Multiple monitors can be used to take care of the failure of the
monitor

An election among them can decide who generates the lost tokeV

coordinator pro
of coordination activity neede
other processes in the system

For example, Coordinator for centralized algorithm, monitor
process in Token ring approach for mutual exclusion

Since all other processes in the system has to interact with
the coordinator, they all must agree on who the coordinator

is

If the coordinator process fails for whatever reason, a new /
coordinator process must be selected to take up the job of
the failed coordinator

Election algorithms are meant for electing a coordinat
process from among the currently running processes in such
a manner that at any instance of time there is a single

coordinator for all processes in the system

algorithm i
Election algorithms based on followi g‘

o Each process has unique priority number

» Whenever an election is held, the process having highest
priority among currently active processes is elected as the

coordinator
» On recovery, a failed process can take appropriate actions to
rejoin the set of active processes

Therefore, whenever initiated, an election algorithm
basically finds out which of the currently active procegses
has the highest priority number and informs this tg’all other
active processes

It assumes that eve
process in the system

But what the processes do not know is which ones are
currently up and which ones are currently down

When a process P; sends a request message to the
coordinator and does not receive a reply within a fixed time
period, it assume that the coordinator has failed

P, then initiates an election by sending an election messa
every process having priority higher than itself

fixed timeout period, it ass o
processes it is the one with the highest pr1o?it

Hence, it takes up job of the coordinator & sends message (let us
call it the coordinator message) to all processes with lower priority
number than itself, informing that from now on it being new
coordinator

When a process P, receives an election message from a process /
having a lower priority than itself, it sends a response message

(say alive message) to the sender informing that it is alive and wj
take over the election activity

The process P; does not take any further action and just wai
receive the final result (coordinator message) from the
coordinator of final result of the election it initiated

Now P;
repeating the above pr

In this way, the election activity graduglfy
process that has the highest priority number among the
currently active processes and eventually wins the election
and becomes new coordinator

As part of the recovery action, this method required that a
failed process (say P,) must initiate an election on recovery /

If the current coordinator’s priority no is higher than that of
P, then the current coordinator will win the election initiat
by P, and will continue to be the coordinator

On the other hand if P, s priority no is higher than thafof
current coordinator, it will not receive any response to its
election message

job from the curr
processes with lower priority nu
coordinator from now on

Hence active processors with the highest priority always win
the election

Therefore the algorithm is called Bully Algorithm as the

process with the higher priority always forces its way to
become the coordinator

It may also be noted here that if the processes having

highest priority number recovers after a failure, it does
initiate an election because it knows from its list of prj
numbers that all other processes have lower priori
numbers than its own

processes an
Let us new see the working of this alg

» The group consist of 8 processes numbered 0 to 7 with proc
the coordinator

» Suppose process 7 just crashes

e process 4 notices it first, so it sends an election message to all the
processes higher than it, namely 5, 6 and 7

° Pllq?icesses 5 and 6 respond with OK, as shown in figure in the next
slide

» Process 5 and 6 hold election and 6 says OK and takes over
election

At this time process 6 knows that 7 is dead as it does not get
response for its election message and it is the winner

Example: processes (-7, 4 detects that 7 has

Example: processes J and 6 respond with OK
._,’{E,”.
N

©

Example: Processes 3 and 6 hold elections

Example: process 6 1s the new Coordinator

Coordinator

itself as the new coord

It is assumed that all the proces
or logically organized in a ring so that eac
its successor is.

The ring is unidirectional in the sense that all the messages
related to the election algorithm are always passed only in one
direction (clockwise / anticlockwise)

Every process in the system knows the structure of the ring,
that while trying to circulate a message over the ring, if the

successor of the sender process is down, the sender ca '
over the successor, or the one after that, until an activ
1s located

einber

Hence, it initiates an election by sending an election message tc
successor (actually to the first successor that is currently active)

This message contains the priority number of the process P,

priority number to message, making itself a candidate to be electe

On recelving the election message, the successor appends its own /
as coordinator and passes on the next active member in the ring

In this manner the election message circulates the ring from o
active process to another and eventually returns back to P,

It recognizes it as its own message by the first priority as its priority

message contain
are currently active

Therefore from this list, it elects the process having the
priority number as the new coordinator

It then circulates a coordinator message over the ring to inform all
the other active process who the new coordinator is /

When the coordinator message comes back to process P, after

completing its one round along the ring, it is removed by proce
P.

1

When the process P, recovers from failure, it creates an en
message and sends it to its successor

The message contains identity of process P,

If the succ

enquiry message to its own P
7 N

In this way, the enquiry message moves forward alo
until it reaches the current coordinator

On receiving enquiry message, the current coordinator sends a
reply to process P, informing that it is the current coordinator

Note that in this algorithm two or more processes may almost
simultaneously discover that the coordinator has crashed an
then each one may circulate an election message over the

Though results in a little waste of network bandwidth, i
not cause any problem because every process will re€eive the
same list of active processes and all of them selectthe same

coordinator

priority detects ¢
in the system having total n proces
elections are performed one after another for the i
one, i.e., all the processes, except the active process with the
high priority and the crashed process

detects failure of the coordinator and initiates an election,
election always requires 2(n-1) messages i.e., one round fo
election message and one round for coordinator messa

However in ring topology irrespective of which process /
an

- On the other hand in
does not initiate an election on recove
searches for the current coordinator

© In conclusion ring algorithm is more efficient compared
bully algorithm and easier to implement /

Explain ‘Happene
Name various clock synchronizati
used in details. Explain in detail.
Explain the concept of logical clocks and their
importance in distributed systems.

A clock of a computer system must never run
backward. Explain how this issue can be handled

in an implementation of logical clocks concepts. /

Election Algorithms (Note)
Explain bully and Ring Algorithms. /
e

External synchronization automatically leads
internal synchronization but converse is no
Explain.

