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 Every computing system needs a timer mechanism called a 
computer clock, to keep track of current time, accounting 
purposes such as time spent on a process, CPU utilization, 
Disk I/O etc.

 In a distributed system an application may have processes 
that concurrently run on multiple nodes of the system

 For correct results several such distributed applications 
require that the clocks of the nodes are synchronized with 
each other

 A distributed on-line reservation system to be fair, the 
only remaining seat booked almost simultaneously from 
two different nodes of the system should be offered to 
the one who booked first, even if the time difference 
between the two are small

 Consider the situation in the next slide

Clock synchronization



 When each machine has its own clock, an event that 

occurred after another event may nevertheless be assigned 

an earlier time

Clock synchronization (Cont’d)



 The computer timer is usually a precisely machined quartz crystal, 
when kept under tension, quartz crystals oscillate at a well defined 
frequency that depends on the kind of crystal, how it is cut and the 
amount of tension

 Associated with each crystal are two registers: a counter and a 
holding register

 Each oscillation of the crystal decrements the counter by one

 When the counter gets to zero, an interrupt called clock tick is 
generated and the counter is reloaded from the holding register 
content

 The value in the holding register is taken in such a way that 60 clock 
ticks occur in every second

 Though the crystal oscillates at fixed frequency, slight differences in 
crystals result in difference in the rate at which two clocks run, which 
leads to drift in clock.

 Secondly each crystal has a built in error in oscillation depending on 
various environmental factors

Physical Clocks



 Synchronization of computer clocks with real time or 

external clocks:

 This type of synchronization is mainly required for real time 

applications

 External clock synchronization allows the system to exchange 

information about the timing of events with an external source.

 An external time source often used for synchronizing computer 

clocks with real time is the Coordinated Universal Time (UTC)

 The UTC is an international standard

 Many standard bodies disseminate UTC signals by radio, 

telephone and satellite

 Commercial devices known as time providers are available to 

receive and interpret these signals

Requirement for Clock Synchronization



 Computers equipped with time provider devices can 

synchronize their clocks with these time signals

 Another method is mutual (or internal) synchronization of 

clocks of different nodes of the system

 This type of synchronization is mainly required for those 

applications that require a consistent view of time across all 

nodes of a distributed system as well as for time duration of 

distributed activities

 Note that externally synchronized clocks are also internally 

synchronized

 Converse is not true as they might drift arbitrarily far from 

external time over the passage of time

Clock synchronization (Cont’d)



Issues in Clock synchronization
 We have seen that no two clocks can be perfectly 

synchronized

 In reality, two clocks are said to be synchronized, if the 

difference in the time value is less than a Specified constant.

 The difference in time values of two clocks is called clock 

skew

 Clock synchronization requires each node to read the other 

nodes’ clock values

 The actual method used to read other clocks differs from 

one algorithm to another



 Errors occur mainly because of unpredictable communication 

delays during message passing used to deliver a clock signal or 

clock message from one node to another

 It is almost impossible to obtain the upper bound to delay.

 Another important issue in clock synchronization is that time must 

not run backwards, this may cause serious problems such as 

repetition of certain operations that may be hazardous in many 

cases

 One way to do this is to make the interrupt routine in clock more 

intelligent

 For example, this can be done by increasing the timer holding 

counter in the clock oscillator to a new higher value so that 

interrupt is generated slower for given period of time, and that 

the synchronization is done smoothly but over a period of time

Issues in Clock synchronization (Cont’d)
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Centralized Algorithms
 In centralized algorithm one node has a real-time receiver

 This node is usually called time server node, and the clock on this 

node is regarded as correct and used as the reference time

 The goal of the algorithm is to keep the clocks of all other nodes 

synchronized with the clock time of the time server node

 Keep the clocks of all nodes synchronized with the clock time of the 

time server node, a real time receiver

 Passive time server centralized algorithm

 Active time server centralized algorithm

 Both these algorithms suffer from the drawbacks

 Single point of failure

 Poor scalability



Passive Time Server 
Centralized

 In this method each node periodically sends message 
(“time=?”) to the time server

 Server quickly responds by sending (“time = T”) where T is the 
current time on the time server (refer the slide on the next 
page)

 As a first approximation, when the sender receives the reply, it 
can adjust its clock to T

 This has two problem, one major, which we have discussed 
earlier that time can not run backwards and hence the change 
has to be introduced gradually by changing interrupt timer as 
discussed earlier

 The minor problem is that it takes non zero time for the server’s 
reply to get back to the sender, it may be even large if there is a 
network problem



 It is simple enough for the sender to record accurately the 

interval between sending the message T0 and receiving reply 

T1 measured using the same clock

 Getting the current time from a time server

Cristian’s Algorithm



 In the absence of any other information, the best estimate, after 
receiving message client adjusts time to 

 T+ (T1-T0)/2; message propagation time one way is (T1-T0)/2)

 This estimate can be further improved if it is known approximately 
how long it takes the server to handle the interrupt(request) and 
process the incoming message 

 T+ (T1-T0- I)/2, I is time taken by time server to handle time request 
message

 Cristian suggested making multiple measurements of  T1-T0

 Those values which exceed a threshold are discarded and an 
average of the rest are used to estimate the correction factor

 This will give good estimate of the average network congestion 
delays, however, their frequency itself will add to the network load

Cristian’s Algorithm (Cont’d)



Active Time Server Centralized

 Time server node periodically broadcasts clock time (“time=T”)

 The other nodes receive the broadcast message and use the clock 

time in the message for correcting their own clocks

 Each node has a prior knowledge of the approximate time for the 

propagation (Ta)

 Client adjusts time to T + Ta

 Drawbacks

 It is not fault tolerant in case message reaches too late at a node, its 

clock will be adjusted to wrong value

 Requires broadcast facility to be supported by the network

 Drawbacks overcome by Berkeley algorithm



Berkeley Algorithm

 It is used for internal clock synchronization of a group

 The time server (actually a time daemon) is active, polling 
every machine from time to time to ask what time it is there 
(“time=?”)

 Each computer in the group sends its clock value to the 
server

 Server has prior knowledge of propagation time from 
different node to  server

 Based on this knowledge, it first readjusts the clock values of 
the reply messages

 It then takes fault tolerant average of the clock values of all 
computers (including its own)



 To take this fault tolerant average, the time server chooses a 
subset of all clock values that do not differ from one another 
by more than a specified amount, and the average is taken 
only from the clock values in this subset

 This approach eliminates readings from unreliable clocks, 
whose clock values could have significant adverse effect if 
an ordinary average is taken

 The calculated average is the current time to which all the 
clocks should be readjusted

 The time server readjusts its own clock to this value

 However, instead of sending the calculated time back to the 
other computers, the time server sends the amount by which 
each individual computer’s clock requires adjustment

Berkeley Algorithm (Cont’d)



1. The time daemon asks all the other machines for their clock values

2. The machines answer

3. The time daemon tells everyone how to adjust their clock

Berkeley Algorithm (Cont’d)



 Remember that external synchronization also results in internal 

synchronization

 i.e., if each node’s clock is independently synchronized with real 

time, all the clocks in system will remain mutually synchronized

 Hence a simple solution is to equip each node of the system with 

real time receiver so that each node’s clock is independently 

synchronized with real time

 Separate internal synchronization is not required in this 

approach

 However in reality, due to the inherent inaccuracy in the real 

time clocks,  different clocks produce different time

 Hence internal synchronization is performed for better accuracy

Distributed Algorithms



Distributed Algorithms (Cont’d)

 Global averaging distributed algorithms

 The clock process at each node broadcasts its local time in the form of 
special “resync” message when its local time equals T0+iR for some 
integer i, where T0 is a fixed time in the past agreed upon by all nodes 
and R is the system parameter that depends on such factors like total 
number of nodes in the system, max allowable drift rate and so on

 All broadcasts do not happen simultaneously due to difference in 
local clocks running at slightly different rates

 Broadcasting node waits for time T, where T is the parameter to be 
determined by the algorithm and during which it collects “resync” 
messages by other nodes & records time of receipt according to its 
own clock

 At the end of waiting time, it estimates the skew of its clock with 
respect to other nodes on the basis of times at which it received 
“resync” messages



Global Averaging Distributed Algorithms
 Calculate fault tolerant average of estimated skews & use it to  correct its 

own local clock before restart of next “resync” interval

 The global averaging algorithms differ mainly in the manner in which 

the fault-tolerant average of the estimated skews is calculated

 Two commonly used algorithms are:

 The simplest algorithm is to take the average of the estimated skews 

and use it as the correction of the local clock

 However to limit the effect of faulty clocks on the average value, the 

estimated skews greater than the threshold are set to zero before 

computing the average of the estimated skews

 In another algorithm each node limits the impact of faulty clocks by 

discarding m highest and m lowest estimates skews and then 

calculating average of the remaining skews

 The value of m is based on total number of clocks (nodes)



Localized Averaging Distributed 

Algorithms

 Global averaging algorithms do not scale well because they require 

the network to support broadcast facility and also because large 

amount message traffic generated

 Hence they are suitable for small networks, especially those that have 

fully connected topology (in which each node has direct 

communication link to every other node)

 The localized averaging algorithms attempt to overcome these 

drawbacks of the global averaging algorithms

 In this approach nodes of a DS are logically arranged in some kind of 

pattern, such as ring or a grid

 Periodically, each node exchanges its clock time with its neighbors in 

the ring, grid etc

 It then sets its clock time to the average of its own clock time and the 

clock time of its neighbors



 Two popular services for synchronizing clocks and for 

providing timing information over a wide variety of inter 

connected networks are the Distributed Time Service (DTS) 

and Network Time Protocol (NTP)

 NTP is used in Internet for clock synchronization

Localized Averaging Distributed 

Algorithms



Numerical

A distributed system has 3 nodes N1, N2 
and N3 each having its own clock. The 
clocks at N1, N2 and N3 tick 495, 500 and 
505 times per millisecond. The system 
uses external synchronization 
mechanism in which all nodes receive 
real time every 20 seconds from external 
file source and readjust their clocks. 
What is the maximum clock skew that will 
occur.



No. of clock ticks in 1 sec
N1 – 495,000
N2 – 500,000
N3 – 505,000
Maximum skew in 1 sec = 10,000 

ticks(505,000-495,000)
Thus, skew in 20 sec = 2,00,000
Assuming the average time is 500,000 ticks in 

1 sec.
Then 2,00,000 ticks leads to skew of = 

2,00,000/500,000 = 0.4 sec



Numerical

A distributed system has 3 nodes N1, N2 
and N3 each having its own clock. The 
clocks at N1, N2 and N3 tick 600, 750 and 
820 times per millisecond. The system 
uses external synchronization 
mechanism in which all nodes receive 
real time every 30 seconds from external 
file source and readjust their clocks. 
What is the maximum clock skew that will 
occur.



No. of clock ticks in I sec
N1 – 600,000
N2 – 750,000
N3 – 820,000
Maximum skew in 1 sec = 220,000 

ticks(820,000-600,000)
Thus, skew in 30 sec = 6600000
Assuming the average time is 723333 

approx ticks in 1 sec.
Then skew = 6600000/723333 = 9.12 sec 

approx



EVENT

ORDERING



 Lamport Observed that, for a certain class of algorithms, it is the 

internal consistency of the clocks that matters, not whether they 

are particularly close to the real time

 It is sufficient to ensure that all events that occur in a DS be totally 

ordered in a manner that is consistent with an observed behavior

 If two processes do not interact, it is not necessary to keep their 

clocks synchronized but rather that they agree on the order in 

which events occur

 To synchronize logical clocks, Lamport defined a new relation 

called happened before and introduced the concept of logical 

clocks for ordering of events based on happened before relation

Event Ordering



Happened Before Relation

 The happened-before relation on a set of events satisfy 

the following conditions:

 If a and b are events in the same process, and a occurs before b then 

a→ b is true

 If a is the event of a message being sent by one process, and b is the 

event of the message being received by another process, then a →

b is also true and this condition holds from the law of causality 

because a receiver can not receive until the sender has sent it

 If a → b and b → c, then a → c (transitive relation)

 Note that in a physically meaningful system an event cannot 

occur before itself, i.e., a → a  not true for any event a



 Concurrent Events - events a and b are concurrent (a||b) if 

neither   a → b nor b → a is true; i.e., they are not related by 

the happened- before relation

 i.e., The two events are concurrent if neither can causally 

affect the other

 Because of this reason happened before relation is some 

times referred to as the relationship of causal ordering

Happened Before Relation (Cont’d)



Process P1 Process P2 Process P3

e10

e11

e12

e13

e22

e30

e31

e32

e21

e20

e23

e24
T
im

e

In this diagram vertical line denotes process, each dot on the 

vertical line denote an event in the corresponding process and 

line denotes a message transfer from one process to another in 

the direction of the arrow

Space-time Diagram for three process



Space-time Diagram for three process

 A space-time diagram (fig. on previous slide) is used to 

illustrate the concepts of happened-before relation and 

concurrent events

 For two events a and b, a → b is true if and only if, there 

exists a path from a to b by moving forward in time along the 

process and message lines in the direction of the arrows

Causally ordered events

(e10→e11), (e20 →e24), (e11 →e23), (e21 →e13)

(e30 →e24) (since e30 →e22 & e22 →e24 )

(e11 →e32) (since e11 →e23, e23 →e24 & e24 →e32 )

 Two events a and b are concurrent if and only if, no path 

exists either from a to b or from b to a



Therefore, the Concurrent events in the example are

(e12, e20), (e21,e30), (e10,e30), (e12,e32), (e13,e22)

 What we need is a way of measuring time such that for every 

event a, we can assign it a time value C(a) on which 

consistency can be maintained.

Space-time Diagram for three process



 List all pairs of concurrent events according to 

happened before relation

Question

Process 

P1

Process 

P2

e1

e2

e3

e4

e7

e6

e5

e8

e9
T

im
e



Causally ordered events –(e1→e2), 
(e2→e3), (e3→e4), (e5→e6), (e6→e7), 
(e7→e8), (e8→e9), (e1→e6), (e3→e9), 
(e7→e4)

Concurrent events - (e1,e5), (e2,e5),
(e3,e5), (e4,e5), (e2,e6), (e2,e7),
(e2,e8), (e2,e9), (e3,e5), (e3,e6),

(e3,e7), (e3,e8), (e8,e4), (e4,e9)

Process 

P1

Process 

P2

e1

e2

e3

e4

e7
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Logical Clocks
 To determine that an event a happened before an event b, 

either a common clock or a set of perfectly synchronized 

clocks are needed

 We know that neither of these are available in a distributed 

system

 Lamport provided a solution to this problem using logical 

clock concept

 The logical clocks concept is a way to associate a timestamp 

(which may be simply a number independent of any clock 

time) with each system event, so that events that are related to 

each other by the happened-before relation (directly or 

indirectly) can be properly ordered in that sequence



 Actually the clocks may be implemented by a set of 

counters with out any timing mechanism

 The logical clocks of a system can be considered to be 

correct if the events of the system that are related to each 

other by the happened-before relation can be properly 

ordered using these clocks

 Hence, Timestamps assigned to events by logical clocks 

must satisfy  the following clock condition:

For any two events a and b, if a → b, then C(a) < C(b)

Logical Clocks (Cont’d)



 From the definition of happened-before relation, following 

conditions must hold:
C1: if a and b are two events within the same process Pi and a occurs 

before b, then Ci(a) < Ci(b)

C2: If a is the sending of a message by process Pi and b is the receipt

of that message by process Pj then Ci(a) <Cj(b)

 In addition to these conditions, which are necessary to 

satisfy the clock condition the following condition is 

necessary for the correct functioning of the system

C3: A clock Ci associated with a process Pi must always go 

forward, never backward

Implementation of Logical 
Clocks



Implementation of Logical Clock using 

Counters

 As shown in the fig. on next slide, two processes P1 and P2

each have counters C1 and C2 respectively

 These counters act as logical clocks

 Counters initialized to zero & incremented by 1 whenever 

an event occurs in that process

 On sending of a message, the process includes the 

incremented value of the counter in the message
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Implementation of Logical Clock using Counters



Using Physical Clocks (Cont’d)

1. Two processes each with its clock. They run at 

different  rates

2. Lamport’s algorithm Corrects the clock

1 2

Time
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Global State
 Sometimes, it is necessary to collect the current status 

of a distributed computation, which is known as the 

global state(eg., to see whether a system is in deadlock 

or to apply checkpoints).

 The global state of a DS actually consists of local state 

of each process, together with the messages which are 

in transit.

 A local state may consist of only those records which 

forms part of database excluding temporary records.

 An effective way of recording global state is distributed 

snapshot(reflects consistent state of a system).

 Snapshot should not record inconsistent messages, 

such as, recording of message receipt but not the 

corresponding message sending.



MUTUAL 

EXCLUSION



Mutual Exclusion

 There are several resources in a system that must not be 

used simultaneously by multiple processes, if the program 

operation is to be correct

 For example a file may not be updated by multiple 

processes

 Hence, exclusive access to such shared resource by a 

process must be ensured

 This exclusiveness of access is called mutual exclusion 

between processes

 The sections program that require exclusive access to 

shared resources are referred to as critical sections



 Conditions to be satisfied by mutual exclusion:

 Mutual exclusion - Given a shared resource accessed by 

multiple concurrent processes, at any time only one process 

should access the resource

 A process that has been granted the resource must release it 

before it can be granted to another process

 No starvation – If every process that is granted resource 

eventually releases it, every request will be eventually granted

 In a single processor system mutual exclusion, critical 

regions are protected using semaphores, monitors and 

similar constructs

 There are three basic approaches  discussed here to achieve 

mutual exclusion in distributed systems

Mutual Exclusion (Cont’d)



Centralized Approach
 The most straightforward way to achieve mutual exclusion in a 

distributed system is to simulate uniprocessor system

 One process is elected as the coordinator

 Coordinator coordinates entry to critical section

 Every process wanting to enter critical section need seek 

permission from the coordinator

 If more than one process concurrently seek permission to enter 

the same critical section, the coordinator allows only one 

process to enter critical section in accordance with some 

scheduling algorithm and the remaining processes are put on a 

queue

 Ensures no starvation as uses first come, first served policy



Centralized Approach
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 On completion of the critical region activity, the process immediately 

releases the critical region and informs the coordinator accordingly 

(fig. on the prev. slide gives the sequence of operation for requests by 

3 processes and a process coordinator)

 This algorithm ensures mutual exclusion because at a time only one 

process is allowed to enter a critical section

 The main advantage of the system is that it is simple to implement

 Requires only 3 messages per request for critical section – request, 

reply, release

 Suffers from usual drawbacks of centralized schemes, namely single 

point of failure & performance bottleneck

 Another problem is, the requesting process has no way of knowing 

whether it is in the queue or the coordinator has crashed

Centralized Approach (Cont’d)



Distributed Approach

 In the distributed approach, the decision making for mutual 

exclusion is distributed across the entire system

 All processes that want to enter the same critical region, 

cooperate with each other before reaching a decision on which 

process will enter the critical region next

 Ricart & Agrawala’s Algorithm

 When a process wants to enter the CS, it sends a request message 

to all other process, and when it receives reply from all processes, 

then only it is allowed to enter the CS

 The request message contains following information:

 Process identifier of the process

 Name of critical section that the process wants to enter

 Unique time stamp generated by process for request message



 The decision whether receiving process replies immediately to 

a request message or defers its reply is based on three rules:

 If receiver process is itself currently executing in the critical 

section, then it queues the message and defers its reply

 If receiver process is neither in the critical section nor is waiting for 

its turn to enter its critical section, it immediately sends a reply

 If receiver process itself is waiting to enter critical section, then it 

compares its own request timestamp with the timestamp in request 

message

 If its own request timestamp is greater than timestamp in request 

message, then it sends a reply immediately

 Otherwise, the reply is deferred and queues receives request message

Distributed Approach (Cont’d)
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Distributed Approach (Cont’d)
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Distributed Approach (Cont’d)



 No. of messages passed becomes the bottleneck with heavy 

communication traffic and the requirement that all processes must 

participate in a critical section entry request by any process

 All requesting processes have to wait indefinitely for the reply from 

the failed system

 A simple modification to the algorithm is instead of remaining silent 

by deferring the sending reply message in cases when permission 

can not be granted immediately, the receiver sends “permission 

denied” reply message to the requesting process and then sends an 

OK message when the permission can be granted

 If no reply is received from a system within timeout period, it is 

assumed to have crashed by the sending process

 The processes need to know the identity of all other processes in the 

system, which makes the dynamic addition and removal of processes 

more complex

Drawbacks



Token Passing Approach

 In this method, mutual exclusion is achieved by using a 
single token that is circulated among the processes in 
system in clockwise or anti-clockwise manner.

 Token is special kind of message that entitles its holder to 
enter a critical section

 For fairness, processes in a system are organized in logical 
ring as shown in the fig. in next slide

 Ring positions may be allocated in numerical order of 
network addresses or some other means

 It is passed from process k to k+1  in point-to-point 
messages

 When a process acquires a token from its neighbor, it checks 
if it wants to enter a critical region and acts as follows



 If it wants to enter a critical section, it keeps the token, 
enters the critical section, does all the work it needs to, and 
leaves the region

 After it has exited, it passes the token along the ring

 It is not permitted to enter a second critical region using the 
same token, it must wait until it gets the token again

 If it does not want to enter a critical section, it just passes the 
token along the region to its neighbor process

 Hence if none of the process is interested in entering a 
critical section, the token simply keeps circulating around 
the ring

 The correctness of this algorithm is easy to see, so only one 
process can actually be in a critical region

Token Passing Approach 
(Cont’d)



a) An unordered group of processes on a 

network.  

b) A logical ring constructed in software.

Token Passing Approach 
(Cont’d)



 Since the token circulates among the processes in a well 
defined order, starvation can not occur

 Once a process decides it wants to enter the critical region, at 
worst it will have to wait for every other process to enter and 
leave the critical region

 Drawbacks:

 A process failure in the system causes the logical ring to  break

 Then a new ring has to be established to ensure the continued 
circulation of the token among other processes

 This requires detection of the failed process and dynamic 
reconfiguration of the logical ring

 Detecting dead process is easy, when a neighbor tries to give it the 
token but fails

Token Passing Approach 
(Cont’d)



 That dead process can be removed from the group and 
passes the token to the process after it or next alive process 
in the sequence

 When a process becomes alive after recovery, it simply 
informs the neighbor previous to it in the ring so that it gets 
the token in the next round of circulation

 Lost token

 If token is lost, a new token must be generated

 Must have mechanism to detect & regenerate a lost token

 Designate one of the processes in the ring as monitor process

 Monitor periodically circulates “who has token” message on the 
ring

 The message rotates round the ring from one process to another

Token Passing Approach (Cont’d)



 All the processes pass this message to their neighbor process, 

except the process that has the token

 This process, on receipt of the message, writes its identifier in a 

special field before passing it to its neighbor

 On return of the message, monitor checks process identifier field. 

If empty generate new token & passes it around the ring

 Multiple monitors can be used to take care of the failure of the 

monitor

 An election among them can decide who generates the lost token

Token Passing Approach (Cont’d)
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ALGORITHMS



 Several distributed algorithms require that there be a 
coordinator process in the system that performs some type 
of coordination activity needed for the smooth running of 
other processes in the system

 For example, Coordinator for centralized algorithm, monitor 
process in Token ring approach for mutual exclusion

 Since all other processes in the system has to interact with 
the coordinator, they all must agree on who the coordinator 
is

 If the coordinator process fails for whatever reason, a new 
coordinator process must be selected to take up the job of 
the failed coordinator

 Election algorithms are meant for electing a coordinator 
process from among the currently running processes in such 
a manner that at any instance of time there is a single 
coordinator for all processes in the system

Election Algorithm



 One of the parameters commonly selected for election 

algorithm is the priority number of the process

 Election algorithms based on following assumptions:

 Each process has unique priority number

 Whenever an election is held, the process having highest 

priority among currently active processes is elected as the 

coordinator

 On recovery, a failed process can take appropriate actions to 

rejoin the set of active processes

 Therefore, whenever initiated, an election algorithm 

basically finds out which of the currently active processes 

has the highest priority number and informs this to all other 

active processes

Election Algorithm (Cont’d)



Bully Algorithm

 This algorithm was proposed by Garcia – Molina in 1982

 It assumes that every process knows priority of every other 

process in the system

 But what the processes do not know is which ones are 

currently up and which ones are currently down

 When a process Pi sends a request message to the 

coordinator  and does not receive a reply within a fixed time 

period, it assume that the coordinator has failed

 Pi, then initiates an election by sending an election message to 

every process having priority higher than itself



 If Pi does not receive any response to its election message within a 

fixed timeout period, it assumes that among the currently active 

processes it is the one with the highest priority number

 Hence, it takes up job of the coordinator & sends message (let us 

call it the coordinator message) to all processes with lower priority 

number than itself, informing that from now on it being new 

coordinator

 When a process Pj receives an election message from a process 

having a lower priority than itself, it sends a response message 

(say alive message) to the sender informing that it is alive and will 

take over the election activity

 The process Pi does not take any further action and just waits to 

receive the final result (coordinator message) from the new 

coordinator of final result of the election it initiated

Bully Algorithm (Cont’d)



 Now Pj holds an election, if it is not already holding one by 
repeating the above process

 In this way, the election activity gradually move on to the 
process that has the highest priority number among the 
currently active processes and eventually wins the election 
and becomes new coordinator

 As part of the recovery action, this method required that a 
failed process (say Pk) must initiate an election on recovery

 If the current coordinator’s priority no is higher than that of 
Pk then the current coordinator will win the election initiated 
by Pk and will continue to be the coordinator

 On the other hand if Pk’s priority no is higher than that of 
current coordinator, it will not receive any response to its 
election message

Bully Algorithm (Cont’d)



 So it winds up the election and takes over the coordinator’s 
job from the current coordinator by informing all the 
processes with lower priority number that it is the new 
coordinator from now on

 Hence active processors with the highest priority always win 
the election

 Therefore the algorithm is called Bully Algorithm as the 
process with the higher priority always forces its way to 
become the coordinator

 It may also be noted here that if the processes having 
highest priority number recovers after a failure, it does not 
initiate an election because it knows from its list of priority 
numbers that all other processes have lower priority 
numbers than its own

Bully Algorithm (Cont’d)



 Hence on recovery it just sends a coordinator message to all other 
processes and bullies the current coordinator into submission

 Let us new see the working of this algorithm with an example

 The group consist of 8 processes numbered 0 to 7 with process 7 as 
the coordinator

 Suppose process 7 just crashes

 process 4 notices it first, so it sends an election message to all the 
processes higher than it, namely 5, 6 and 7

 Processes 5 and 6 respond with OK, as shown in figure in the next 
slide

 Process 5 and 6 hold election and 6 says OK and takes over 
election

 At this time process 6 knows that 7 is dead as it does not get 
response for its election message and it is the winner

Bully Algorithm (Cont’d)







 Suppose now process 7 recovers from the crash, and it 

knows that it is the process with the highest priority number, 

it sends a coordinator message to all processes and elects 

itself as the new coordinator

Bully Algorithm (Cont’d)



Ring Algorithm

 Another election algorithm is based on the use of ring concept

 It is assumed that all the processes in the system are physically 

or logically organized in a ring so that each process knows who 

its successor is.

 The ring is unidirectional in the sense that all the messages 

related to the election algorithm are always passed only in one 

direction (clockwise / anticlockwise)

 Every process in the system knows the structure of the ring, so 

that while trying to circulate a message over the ring, if the 

successor of the sender process is down, the sender can skip 

over the successor, or the one after that, until an active member 

is located



 When a process say Pi sends a request message to the current 

coordinator and does not receive a reply within the fixed timeout 

period, it assumes that the coordinator has crashed

 Hence, it initiates an election by sending an election message to its 

successor (actually to the first successor that is currently active)

 This message contains the priority number of the process Pi

 On receiving the election message, the successor appends its own 

priority number to message, making itself a candidate to be elected 

as coordinator and passes on the next active member in the ring

 In this manner the election message circulates the ring from one 

active process to another and eventually returns back to Pi

 It recognizes it as its own message by the first priority as its priority

Ring Algorithm (Cont’d)



 When the process Pi receives its own election message, the 

message contains the list of priority numbers of all processes that 

are currently active

 Therefore from this list, it elects the process having the highest 

priority number as the new coordinator

 It then circulates a coordinator message over the ring to inform all 

the other active process who the new coordinator is 

 When the coordinator message comes back to process Pi after 

completing its one round  along the ring, it is removed by process 

Pi 

 When the process Pj recovers from failure, it creates an enquiry 

message and sends it to its successor

 The message contains identity of process Pj

Ring Algorithm (Cont’d)



 If the successor is not the coordinator, it simply forwards the 

enquiry message to its own successor

 In this way, the enquiry message moves forward along the ring 

until it reaches the current coordinator

 On receiving enquiry message, the current coordinator sends a 

reply to process Pj informing that it is the current coordinator

 Note that in this algorithm two or more processes may almost 

simultaneously discover that the coordinator has crashed and 

then each one may circulate an election message over the ring

 Though results in a little waste of network bandwidth, it does 

not cause any problem because every process will receive the 

same list of active processes and all of them select the same 

coordinator

Ring Algorithm (Cont’d)



Comparison of election 
algorithms

 In the bully algorithm when the process having lowest 

priority detects coordinator failure and initiates an election 

in the system having total n processes, altogether n-2 

elections are performed one after another for the initiated 

one, i.e., all the processes, except the active process with the 

high priority and the crashed process

 However in ring topology irrespective of which process 

detects failure of the coordinator and initiates an election, an 

election always requires 2(n-1) messages i.e., one round for 

election message and one round for coordinator message



 In Bully algorithm the failed process has to initiate an 

election on recovery

 On the other hand in the ring algorithm, a failed process 

does not initiate an election on recovery, but simply 

searches for the current coordinator

 In conclusion ring algorithm is more efficient compared 

bully algorithm and easier to implement

Comparison of election 
algorithms



UNIVERSITY QUESTIONS

 Explain ‘Happened Before’ relations.
 Name various clock synchronization algorithms 

used in details. Explain in detail.
 Explain the concept of logical clocks and their 

importance in distributed systems.
 A clock of a computer system must never run 

backward. Explain how this issue can be handled 
in an implementation of logical clocks concepts.

 Election Algorithms (Note)
 Explain bully and Ring Algorithms.
 External synchronization automatically leads to 

internal synchronization but converse is not true. 
Explain.


