educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Unit 6

Advyances in Distributed Computing
Service-Oriented Architecture, Elements of Service-Oriented Architectures, RPC
versus Document Orientation, Major Benefits of Service- Oriented Computing,
Composing Services, Goals of Composition, Challenges for Composition, Spirit
of the Approach.

Visit educlash.com for more

Use Cases:

The interesting thing about these use cases is they are not all fancy. This
supports the view that service-oriented computing is not a set of futuristic
technologies for applications that may or may not matter, but a set of existing
and emerging technologies that solve problems that have been with computer
science for a while. To help ground our examples, let us first consider at some
length a few aspects of a typical surgery division of a large US hospital. A
challenge in such a setting would be to make the payroll, scheduling, and billing
systems interoperate. Each of the systems would likely be quite complex and
involve its own user interfaces and databases and run on different operating
systems. There are obvious reasons for ensuring that these systems interoperate.
For example, scheduling employees and operating rooms for surgery is a
complex task; schedules are rarely final and must be updated until the time has
passed. This is so the availability of staff and key equipment can be balanced
with the unpredictable demand from patients needing surgical procedures with
various levels of urgency and advance notice. Next, the staff must be
compensated for their efforts via the payroll system. Just as for scheduling, the
mechanisms for payroll are nontrivial, because various kinds of over-time rules
would come into consideration for the different categories of labor: nurses,
residents, fellows, consulting physicians, senior surgeons, anaesthesiologists,
radiologists, and so on. Likewise, the billing system must also incorporate the
schedule information. Billing is extremely arcane in most businesses, and
especially medicine. The billing system must not only bill customers, but also
deal with medical insurance companies and often with government agencies
(e.g., agencies for children, the elderly, retired government employees, and
veterans). Such agencies typically impose various complex rules for valid
billing and penalties for the violation of such rules. For example, different rules
apply across the USA as to how hospitals may bill for the efforts of
anaesthesiologists during surgeries. In some USA states, a senior
anaesthesiologist may supervise up to four junior (resident) anaesthesiologists.
The senior person time-shares his or her effort among four concurrent surgeries,
whereas each junior person is dedicated to one of the surgeries. However, if
there is an emergency and a fifth surgical procedure must be conducted under
the supervision of the same senior anaesthesiologist, then that is tolerated, but
the billing rate is severely reduced. If such a situation occurs, the billing system

educlash.com [ADC] [Vipin Dubey] 1



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

must be aware of it. Notice that the billing for a surgery on a patient depends
not only on the given surgery, but also on other apparently unrelated events.
Conversely, the scheduling system may work with some other decision-support
tool to ensure that there are enough anaesthesiologists on staff and on call so
that the overall billings by the hospital are optimized.

Service-Oriented Architecture:

The above use cases provide a challenging set of requirements for any approach
to computing. While there are no free lunches in computer science, the
requirements can be satisfied more easily through an architecture that matches
the essential properties of the above use cases. Let us term such an architecture
a service-oriented architecture (SOA).

The emphasis falls on the architecture because many of the key techniques are
already well understood in isolation. Practical success would depend on how
well these techniques can be placed in a cohesive framework—an
architecture—and translated into methodologies and infrastructure so they can
be applied in production software development. Recent progress on standards
and tools is extremely encouraging in this regard. There can be several SOAs
provided they satisfy the key elements of service-oriented computing, which
are introduced below. The current incarnation of Web services emphasizes a
single provider offering a single service to a single requester. This is in keeping
with a client-server architectural view of the Web.

Elements of Service-Oriented Architectures:
To realize the above advantages, SOAs impose the following requirements:

e Loose coupling: No tight transactional properties would generally apply
among the components. In general, it would not be appropriate to specify
the consistency of data across the information resources that are parts of
the various components. However, it would be reasonable to think of the
high-level contractual relationships through which the interactions
among the components are specified.

e Implementation neutrality: The interface is what matters. We cannot
depend on the details of the implementations of the interacting
components. In particular, the approach cannot be specific to a set of
programming languages.

o Flexible configurability: The system is configured late and flexibly. In
other words, the different components are bound to each other late in the
process. The configuration can change dynamically.

educlash.com [ADC] [Vipin Dubey] 2



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

e Long lifetime: We do not necessarily advocate a long lifetime for our
components. However, since we are dealing with computations among
autonomous heterogeneous parties in dynamic environments, we must
always be able to handle exceptions. This means that the components
must exist long enough to be able to detect any relevant exceptions, to
take corrective action, and to respond to the corrective actions taken by
others. Components must exist long enough to be discovered, to be relied
upon, and to engender trust in their behavior.

e Granularity: The participants in an SOA should be understood at a
coarse granularity. That is, instead of modeling actions and interactions
at a detailed level, it would be better to capture the essential high-level
qualities that are (or should be) visible for the purposes of business
contracts among the participants. Coarse granularity reduces
dependencies among the participants and reduces communications to a
few messages of greater significance.

e Teams: Instead of framing computations centrally, it would be better to
think in terms of how computations are realized by autonomous parties.
In other words, instead of a participant commanding its partners,
computation in open systems is more a matter of business partners
working as a team. That is, instead of an individual, a team of cooperating
participants is a better modelling unit. A team-oriented view is a
consequence of taking a peer-to-peer architecture seriously.

Researchers in multi agent systems (MAS) confronted the challenges of open
systems early on when they attempted to develop autonomous agents that
would solve problems cooperatively, or compete intelligently. Thus, ideas
similar to service-oriented architectures were developed in the MAS literature.
Although SOAs might not be brand new, they address the fundamental
challenges of open systems. Clearly the time is right for such architectures to
become more prevalent. What service-oriented computing adds to MAS ideas
is the ability to build on conventional information technology and do so in a
standardized manner so that tools can facilitate the practical development of
large-scale systems.

RPC versus Document Orientation:

e There are two main views of Web services. Services can be understood
in terms of the RPC-centric view or the document-centric view. The
former treats services as offering a set of methods to be invoked
remotely, i.e., through remote procedure calls. The latter treats services
as exchanging documents with one another. In both views, what is
transmitted are XML documents and what is computed with are objects

educlash.com [ADC] [Vipin Dubey] 3



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

based on or corresponding to the XML documents. However, there is a
significant conceptual difference.

e The RPC view sees the XML documents as incidental to the overall
distributed computation. The documents are merely serializations of the
business objects on which the main computation takes place. The
document-centric view considers the documents as the main
representations and purpose of the distributed computation. Each
component reads, produces, stores, and transmits documents. The
documents are temporarily materialized into business objects to enable
computing, but the documents are the be all and end all of the
computation.

e The RPC view thus corresponds to a thin veneer of Web services over an
existing application. The application determines what functionality the
services will support. The document view more naturally considers Web
services as a means of implementing business relationships. The
documents to be processed (and their relationships) determine the
functionality of the services. The business objects, such as there are, on
either side of a relationship are local, and should not be exposed to the
other side.

e For this reason, the document-centric view coheres better with our
primary use case of applying services in open environments. The RPC
view is more natural for the use case of making independently developed
applications interoperate. What happens is that application developers
expose their application interface in the form of Web services, which can
then be bound to in the usual manner. If the applications are designed for
method integration, then the RPC view of services is natural for such
interoperation. However, if the applications are designed—as they
should be—to function as independent components, then the document
centric view would be natural even for application interoperation.

educlash CGPA Convertor

Convert: SGPI->CGPA B PERCENTAGE f CGPA->PERCENTAGE
Visit educlash.com for more

Major Benefits of Service-Oriented Computing:
It is worth considering the major benefits of using standardized services here.
Clearly anything that can be done with services can be done without. So what
are some reasons for using services, especially in standardized form? The
following are the main reasons that stand out.
e Services provide higher-level abstractions for organizing applications in
large-scale, open environments. Even if these were not associated with

educlash.com [ADC] [Vipin Dubey] 4



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

standards, they would be helpful as we implemented and configured
software applications in a manner that improved our productivity and
improved the quality of the applications that we developed.

e Moreover, these abstractions are standardized. Standards enable the
interoperation of software produced by different programmers.
Standards thus improve our productivity for the service use cases
described above.

e Standards make it possible to develop general-purpose tools to manage
the entire system lifecycle, including design, development, debugging,
monitoring, and so on. This proves to be a major practical advantage,
because without significant tool support, it would be nearly impossible
to create and field robust systems in a feasible manner. Such tools ensure
that the components developed are indeed interoperable, because tool
vendors can validate their tools and thus shift part of the burden of
validation from the application programmer.

e The standards feed other standards. For example the above basic
standards enable further standards, e.g., dealing with processes and
transactions.

Composing Services:

e Although there can be some value in accessing a single service through
a semantically well founded interface, the greater value is clearly derived
through enabling a flexible composition of services. Composition leads
to the creation of new services from old ones and can potentially add
much value beyond merely a nicer interface to a single pre-existing
service. The new services can be thought of as composite services.

e From a business perspective too, intermediaries that primarily offer
access to a single service would have a tough time thriving or even
surviving. Airline travel agents are a case in point. Traditional travel
agents provide a nice user interface: friendly and with a human touch,
but little more. However, airlines do not like to pay commissions for
services that merely repackage their offerings. As a result, the airlines
compete with the travel agents and reduce their commissions, slowly
squeezing them out of business. This is as one would expect where the
offerings are conceptually simple, especially for frequent customers. By
contrast, package tour operators, who combine offers from airlines and
other vendors, can prosper. In other words, the increased complexity due
to subtle compositions is essential for intermediaries to flourish, because
it provides an opportunity for offering greater value to customers.

e Service composition concepts involve enough intricacy as to attract
considerable interest and to demand a careful analysis of the underlying

educlash.com [ADC] [Vipin Dubey] 5



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

principles. The need for principles is greater as the basic infrastructure
for Web services becomes more common. We address these principles
herein. Sometimes, the term composition is taken to mean a particular
approach to achieving composition, for example, by invoking a series of
services. In the present usage, however, composition refers to any form
of putting services together to achieve some desired functionality.

e Composed Web services find application in a number of practical
settings. For example, portals aggregate information from a number of
sources and possibly offer programmatic facilities for their intended
audience. The challenge to making an effective portal is to be able to
personalize the information presented to each user. Electronic commerce
is another major scenario where users would like to aggregate product
bundles to meet their specific needs. Virtual enterprises and supply-chain
management reflect generalizations of the consumer oriented e-
commerce scenarios, because they include more subtle constraints
among a larger number of participants

Goals of Composition:

e Most of the applications touted for Web services are simple and
straightforward client-server interactions. For example, an airline’s
flight-schedule database could interact directly with a PC user’s personal
information and appointment software to book a flight; or software for a
personal database of contacts could automatically query a distant series
of phone databases to add missing numbers to its list. This sort of a
scenario is not far-fetched at all. Even in the early days of Web service
standards, Southwest Airlines and Dollar Rent-A-Car developed a
prototype system that used SOAP to link Southwest’s Web site to
Dollar’s reservation system, so that airline customers could reserve a car
along with their airline tickets.

e Although useful, such applications are insufficient to drive the strong
development and deployment of Web services. The fruitful, and also the
more challenging, applications require services to be combined in ways
that yield more powerful and novel uses. For example, the airline’s flight
schedule might also enable a fuel supplier to anticipate fuel purchases by
the airline and to alert its refineries to adjust their production rates. Or, a
travel agency Web site could combine the services of Southwest Airlines,
Dollar Rent-A-Car, and Sheraton to construct custom travel packages.

e Service composition has been studied in the research literature for quite
some time, but it is now becoming an important theme in practical Web
system development. The basic idea behind service composition is
simple. Web sites can be thought of as not only offering content, but also

educlash.com [ADC] [Vipin Dubey] 6



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
providing services. For example, Yahoo! provides a news service and
Amazon provides a book selection service. We typically invoke these
services by hand through a Web browser, but a program could invoke
them directly. Service composition on the Web is about taking some
existing services and building new customized services out of them. For
instance, you might find the latest news headlines and search for books
that match those headlines. Another example is where you might take the
news from one service, filter it through a service that selects news based
on a given user’s interests, and pass the selected news items through a
transcoding service to create a personalized Web page that a user could
review through a handheld device. Or, more conventionally, you could
create a travel service that invokes hotel, airline, and car rental services.
In other words, you would create a workflow over the existing services

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE jJ CGPA->PERCENTAGE

Visit educlash.com for more

Challenges for Composition:

The main advantage of Web services arises when we can compose them to
create new services. Unfortunately, much of the attention on Web services has
been focused on the lower level, infrastructural matters, often down to encoding
syntaxes and unnecessarily narrow means of invoking services. For Web
services to be composed effectively requires an understanding of deeper
concepts. These concepts have been developed in diverse parts of computer
science, especially heterogeneous databases, distributed computing, artificial
intelligence, and multi agent systems.

SellCamera e
Web Service : -

- A

I —
Inventory
f—
Sales
Database Shipping
Database

Figure 5.1: An example of a business-to-consumer (B2C) transaction
environment, where cameras are sold to customers over the Web

Consider a simple business-to-consumer (B2C) situation, where a company
sells digital cameras over the Web, combining an on-line catalog with up-to-

educlash.com [ADC] [Vipin Dubey] 7



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

date models and prices, a valid credit-card transaction, and a guaranteed
delivery. The B2C transaction software, as shown in Figure 5.1, would

® Record asale in a sales database.

e Debit the credit card.

e Send an order to the shipping department.

e Receive an OK from the shipping department for next-day delivery.

e Update an inventory database.

However, some problems can arise: What if the order is shipped, but the debit
fails? What if the debit succeeds, but the order was never entered or shipped?
If this were a closed environment, then transaction processing (TP) monitors
(such as IBM’s CICS, Transarc’s Encina, or BEA System’s Tuxedo) can ensure
that all or none of the steps are completed and that the systems eventually reach
a consistent state. But suppose the user’s modem is disconnected right after he
clicks on OK. Did the order succeed? Suppose the line went dead before the
acknowledgment arrives. Will the user order again? The basic problem is that
the TP monitor cannot get the user into a consistent state! The user is part of
the software system’s environment, which is open because it can accommodate
any user. The TP monitor is able to control no more than the part of the
environment that is within its scope. Possible solutions for an open environment
include

e The server application could send email about credit problems, or detect
duplicate transactions.

e A downloaded Java applet could synchronize with the server after the
broken connection was re-established and recover the transaction; the
applet could communicate using HTTP, or directly with server objects
via CORBA’s Internet Inter-ORB Protocol (IIOP) (where an ORB is
CORBA'’s object request broker) or Remote Method Invocation (RMI).

e If there are too many orders to process synchronously, they could be put
in a message queue, managed by a Message Oriented Middleware
(MOM) server (which guarantees message delivery or failure
notification), and customers would be notified by email when the
transaction is complete.

Email is typically used for people to communicate with each other, so in using
email, the server is behaving like an intelligent agent. We will have more to say
about the emerging agent-like aspects of the Web and its services in later
chapters.

Notice that although the above example considers a user dealing with a
particular enterprise, the problem arises in more acute form in business-to-
business settings. If our little camera store were considered as merely a
component in a large supply network, it would have no hope of forcing the
other parties to conduct their local transactions in any particular manner or to

educlash.com [ADC] [Vipin Dubey] 8



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

reliably converge to a state that would be consistent across the system. Deeper
models of transactions and of business processes are needed to ensure that the
correct behavior is realized in such cases.

The current specifications for Web services do not address transactions or
specify a transaction model. The Organization for the Advancement of
Structured Information Standards (OASIS) is developing one, but the view of
most implementors is that SOAP will manage transactions—somehow.
Without guidance from a standard or an agreed-upon methodology by the major
vendors, transactions will be implemented in an ad hoc fashion, thus defeating
the hopes for interoperability and extensibility. Some of the other problems for
composed services are:

e Security will be more difficult, because more participants will be
involved and the nature of their interactions and their needs might be
unanticipated by the designers of the services.

e There will be incompatibilities in vocabularies, semantics, and
pragmatics among the service providers, service brokers, and service
requesters.

e As services are composed dynamically, performance problems might
arise that were not anticipated.

e Dynamic service composition will make it difficult to guarantee the
quality of service (QoS) that applications require.

Two fundamental styles for delivering Web services are emerging,
characterized as RPCstyle (favored by Sun) and document-style (favored by
Microsoft, and supported by Sun). In the latter style, the body of a SOAP
message would not have the call-response semantics of most programming
languages, but rather would consist of arbitrary XML documents that use
WSDL to describe how a service works. In the long term the document-style is
likely to prevail, because it is more declarative (rather than procedural), more
asynchronous, and more consistent with the document-exchange underpinnings
of the Web.

Spirit of the Approach:

e Topublish effectively, we must be able to specify services with precision
and with greater structure. This is because the service would eventually
be invoked by parties that are not from the same administrative space as
the provider of the service and differences in assumptions about the
semantics of the service could be devastating.

¢ From the perspective of the registry, it must be able to certify the given
providers so that it can endorse the providers to the users of the registry.

e Requestors of services should be able to find aregistry that they can trust.
This opens up challenges dealing with considerations of trust, reputation,

educlash.com [ADC] [Vipin Dubey] 9



educlash Result / Revaluation Tracker

Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more
incentives for registries and, most importantly, for the registry to
understand the needs of a requestor.

* Once a service has been selected, the requestor and the provider must
develop a fine-grained sharing of representations. They must be able to
participate in conversations to conduct long-lived, flexible transactions.
Related questions are those of how a service level agreement (SLA) can
be established and monitored. Success or failure with SLAs feeds into
how a service is published and found, and how the reputation of a
provider is developed and maintained.

The keys to the next-generation Web are cooperative services, systemic trust,

and understanding based on semantics, coupled with a declarative agent-based

infrastructure. The size and dynamism of the Web presents problems, but it

fortuitously provides a means for solving its own problems. For example, for a

given topic there might be an overload of information, with much of it

redundant and some of it inaccurate, but a system can use voting techniques to
reduce the information to that which is consistent and agreed upon. For another
example, there might be many potential service providers competing for many

potential clients, and some of the providers might not be trustworthy, but a

system can use a Web-based reputation network to assess credibility. Finally,

there might be many different ontologies used by different sites, but a

multiplicity of ontologies can be shown to yield a global, dynamically formed,

consensus ontology.

educlash CGPA Convertor

Convert: SGPI->CGPA & PERCENTAGE ] CGPA->PERCENTAGE
Visit educlash.com for more

educlash.com [ADC] [Vipin Dubey] 10



