
Efficiency of Algorithms

Algorithm efficiency

• It is defined as a function of the number of
elements being processed and the type of loop
being used.

f(n)=efficiency

• The study of algorithm efficiency therefore
focuses on loops.

IMP NOTE

• The efficiency of algorithm is measured in
terms of both time and space but
inexpensive memory has reduced the
significance of space efficiency.

• Therefore more emphasis is given on time
efficiency.

Basic concepts of algorithm efficiency for
different types of loops:

• Linear loops:

– The efficiency of linear loops is directly
proportional to the number of iterations.

– Efficiency

• f(n)=n

– In a linear loop, the controlling variable either
adds or subtracts.

– Eg:

• Logarithmic loops:

– In a logarithmic loop, the controlling variable is
either multiplied or divided in each iteration.

– Efficiency

• f(n)=logn

– Eg:

• Nested Loops:

– Loops that contain loops are called nested loops.

– Total iterations= outer loop * inner loop

iterations iterations

– 3 nested loops are:

• Linear logarithmic loop :

• Quadratic loop:

• Dependant quadratic loop:

Nested loops

• Linear logarithmic loop

– The generalized efficiency is f(n)=nlogn

– Eg:

• Quadratic loop

– The number of iterations of the inner loop =

The number of iterations of the outer loop

– The generalized efficiency is f(n)=n2

– Eg:

Nested loops

• Dependant quadratic loop

– The number of iterations of the inner loop
depends on the outer loop.

– The generalized efficiency is f(n)=n(n+1)/2

– Eg:

Big-O Notation

• A dominant factor in the equation usually detemines the order
of magnitude of the result.Therefore we don’t need to
determine the complete measure of efficiency.

• This factor is the big-O as in “ on the order of” and expressed as
O(n)- i.e Order of n.

• Steps in deriving the big-O notation:
– In each term , set the coefficient of the term to 1.

– Keep the largest term in the function and discard the others.

• Terms are ranked from lowest to highest as follows:

– logN N NlogN N2 N3…Nk 2N N!

These are:

• 1

– The time requirement is constant and,therefore,
independent of the problem's size.

• log2N

– The time requirement for a logarithmic algorithm
increases/decreases slowly as the problem size
increases/decreases respectively.

• N

– The time requirement for a linear algorithm increases
directly with the size of the Problem.

Cont…

growth-rate functions have the following intuitive
interpretations

growth-rate functions have the following intuitive
interpretations

• Nlog2N
– The time requirement increases more rapidly than a linear

algorithm. Such algorithms usually divide a problem into
smaller problems that are each solved separately.

• N2

– The time requirement for a quadratic algorithm increases
rapidly with the size of the problem. Algorithms that use
two nested loops are often quadratic.

• N3

– The time requirement for a cubic algorithm increases more
rapidly with the size of the problem than the time
requirement for a quadratic algorithm. Algorithms that use
three nested loops are often cubic and are practical only
for small problems.

growth-rate functions have the following
intuitive interpretations

• 2N

– As the size of a problem increases, the time requirement for an
exponential algorithm usually increases too rapidly to be
practical.

Growth Rates Compared

n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1

logn 0 1 2 3 4 5

n 1 2 4 8 16 32

nlogn 0 2 8 24 64 160

n2 1 4 16 64 256 1024

n3 1 8 64 512 4096 32768

2n 2 4 16 256 65536 4294967296

Time complexity analysis

• In time complexity, we analyse for

– N-> infinity(for large values of n)

– No constants

• 3 Notations exist:

– Big O

– Theta

– omega

Big O

• In this,

– f(n)<= c g(n)

Where c is a constant

• Graph

• In most cases , we use big O notation because it gives the time complexity in the
worst case.

• Big O gives the longest time that an algorithm takes for its completion of
execution.(worst case)

Theta notation

• In this,

– c1 g(n)<=f(n)<= c2 g(n)

Where c1 and c2 are constants and

n= integer

• Graph

• Theta is the best notation because it is tight bound expression

• Average time an algorithm takes for completing its execution.

Omega notation

• In this,

– c1 g(n)<=f(n)

– Where c1 is a constant

• Graph

• Omega notation gives the lower bound of growth of function

• Minimum time an algorithm takes for completing its
execution.

Difference between Big O, Omega
and theta

• Big O:

– longest time an algorithm takes for completing its
execution.

• Omega:

– Minimum time an algorithm takes for completing
its execution.

• Theta:

– Average time an algorithm takes for completing its
execution.

