Efficiency of Algorithms

Algorithm efficiency

 It is defined as a function of the number of elements being processed and the type of loop being used.

 The study of algorithm efficiency therefore focuses on loops.

IMP NOTE

- The efficiency of algorithm is measured in terms of both time and space but inexpensive memory has reduced the significance of space efficiency.
- Therefore more emphasis is given on time efficiency.

Basic concepts of algorithm efficiency for different types of loops:

Linear loops:

- The efficiency of linear loops is directly proportional to the number of iterations.
- Efficiency
 - f(n)=n
- In a linear loop, the controlling variable either adds or subtracts.
- Eg:

- Logarithmic loops:
 - In a logarithmic loop, the controlling variable is either multiplied or divided in each iteration.
 - Efficiency
 - f(n)=logn
 - Eg:

- Nested Loops:
 - Loops that contain loops are called nested loops.
 - Total iterations= outer loop * inner loop
 iterations iterations
 - 3 nested loops are:
 - Linear logarithmic loop:
 - Quadratic loop:
 - Dependant quadratic loop:

Nested loops

- Linear logarithmic loop
 - The generalized efficiency is f(n)=nlogn
 - Eg:
- Quadratic loop
 - The number of iterations of the inner loopThe number of iterations of the outer loop
 - The generalized efficiency is f(n)=n²
 - Eg:

Nested loops

- Dependant quadratic loop
 - The number of iterations of the inner loop depends on the outer loop.
 - The generalized efficiency is f(n)=n(n+1)/2
 - Eg:

Big-O Notation

- A dominant factor in the equation usually determines the order of magnitude of the result. Therefore we don't need to determine the complete measure of efficiency.
- This factor is the big-O as in " on the order of" and expressed as
 O(n)- i.e Order of n.
- Steps in deriving the big-O notation:
 - In each term , set the coefficient of the term to 1.
 - Keep the largest term in the function and discard the others.
- Terms are ranked from lowest to highest as follows:
 - $-\log N N N \log N N^2 N^3...N^k 2^N N!$

growth-rate functions have the following intuitive interpretations

These are:

- 1
 - The time requirement is constant and, therefore, independent of the problem's size.
- log₂N
 - The time requirement for a logarithmic algorithm increases/decreases slowly as the problem size increases/decreases respectively.
- N
 - The time requirement for a linear algorithm increases directly with the size of the Problem.

growth-rate functions have the following intuitive interpretations

Nlog₂N

 The time requirement increases more rapidly than a linear algorithm. Such algorithms usually divide a problem into smaller problems that are each solved separately.

• N²

 The time requirement for a quadratic algorithm increases rapidly with the size of the problem. Algorithms that use two nested loops are often quadratic.

• N³

The time requirement for a cubic algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm. Algorithms that use three nested loops are often cubic and are practical only for small problems.

growth-rate functions have the following intuitive interpretations

• 2^N

As the size of a problem increases, the time requirement for an exponential algorithm usually increases too rapidly to be practical.

Growth Rates Compared

	n=1	n=2	n=4	n=8	n=16	n=32
1	1	1	1	1	1 <0	1
logn	0	1	2	3	4	5
n	1	2	4	8	16	32
nlogn	0	2	8	24	64	160
n^2	1	4	16	64	256	1024
n^3	1	8	64	512	4096	32768
2 ⁿ	2	4	16	256	65536	4294967296

Time complexity analysis

- In time complexity, we analyse for
 - N-> infinity(for large values of n)
 - No constants
- 3 Notations exist:
 - Big O
 - Theta
 - omega

Big O

- In this,
 - f(n)<= c g(n)Where c is a constant
- Graph
- In most cases, we use big O notation because it gives the time complexity in the worst case.
- Big O gives the longest time that an algorithm takes for its completion of execution.(worst case)

Theta notation

- In this,
 - c1 g(n)<=f(n)<= c2 g(n)Where c1 and c2 are constants andn= integer
- Graph
- Theta is the best notation because it is tight bound expression
- Average time an algorithm takes for completing its execution.

Omega notation

- In this,
 - c1 g(n) <= f(n)
 - Where c1 is a constant
- Graph
- Omega notation gives the lower bound of growth of function
- Minimum time an algorithm takes for completing its execution.

Difference between Big O, Omega and theta

• Big O:

longest time an algorithm takes for completing its execution.

Omega:

Minimum time an algorithm takes for completing its execution.

• Theta:

Average time an algorithm takes for completing its execution.