

}MSIL ðMicrosoft Intermediate Language

}CLR ðCommon Language Runtime

}CLS ðCommon Language Specification

}CTS ðCommon Type Specification

}FCL ðFramework Class Library

Native CodeMSIL CodeSource Code

}Microsoft Intermediate Language
}Also called CIL ðCommon Intermediate Language
}Low level, object - oriented, human readable

language
}Platform independent and language independent

set of instructions
}Two tools are associated with MSIL - MSIL

Assembler (Ilasm.exe) and the MSIL Disassembler
(Ildasm.exe).

}The former generates a portable executable file
from IL code.

}The latter converts a portable executable file
back to a text file, for viewing and modification.

.method private hidebysig static void Main(string[] args) cil managed

{

.entrypoint

// Code size 109 (0x6d)

.maxstack 2

.locals init ([0] int32 fnum ,

[1] string fstrnum ,

[2] int32 snum ,

[3] int32 ans,

[4] bool CS$4$0000)

IL_0000: nop

IL_0001: ldstr "Hello World"

IL_0006: call void [mscorlib]System.Console ::WriteLine (string)

IL_000b: nop

IL_000c: ldstr "Enter First number:"

IL_0011: call void [mscorlib]System.Console ::WriteLine (string)

IL_0016: nop

IL_0017: call string [mscorlib]System.Console ::ReadLine()

IL_001c: stloc.1

IL_001d: br.s IL_0025

IL_001f: call string [mscorlib]System.Console ::ReadLine()

IL_0024: stloc.1

IL_0025: ldloc.1

IL_0026: ldloca.s fnum

IL_0028: call bool [mscorlib]System.Int32:: TryParse(string,

int32&)

} With MSIL , compiler also
produces Metadata, both kept in PE : Portable
Executable files.

} MSIL performs many task and contains
instruction useful for loading, initializing,
storing, control flow, exception handling,
object creation & manipulation, type
conversion and many other operations.

}Binary code that contains the self - description
of the program.

}When a compiler produces Microsoft
Intermediate Language (MSIL), it also
produces Metadata. The Microsoft
Intermediate Language (MSIL) and Metadata
are contained in a portable executable (PE)
file .

}When the program gets executed the CLR
loads the metadata into memory and
references it to discover the information of
the code.

}Metadata contains the following
information: -
ƁDefinition of each type used in your code

ƁThe signatures of data members used in types

ƁThe members that are referred by code

ƁData required by CLR to execute the program

}Virtual machine component of .NET

}Supervises the execution of a .NET program

}Also called the execution engine of the .NET
Framework

}The MSIL code is converted into machine
code at the time of execution with the help of
the JIT(just - in - time) compiler

}Components provided by CLR: -
ƁJIT compiler ðconverts MSIL code to native code

ƁMemory Manager ðmanages the resources that
are required by the code at the time of execution

ƁGarbage Collector ðProvides automatic memory
management. It automatically releases the
objects that are no longer in use.

ƁSecurity Engine ðEnforces security restrictions to
a .Net code by imposing CAS or Code Access
Security. It prevents unauthorized access to
protected resources and operations.

ƁClass Loader ðloads the classes of a .Net
language in the runtime into RAM on demand.

}Components provided by CLR(continued): -
ƁType Checker ðperforms strict type checking of

.Net program

ƁThread execution support ðprovides multithreading
support by .Net applications

ƁException Manager ðprovides a mechanism to
handle the runtime exceptions

ƁDebugger ðSpecifies a debug engine that helps you
to debug different type of applications

}In .Net , the source code is compiled into MSIL
code and then the MSIL code is again
converted into native code with the help of JIT
compiler. This is called managed code. This
code goes through CLR services like type
checking, security and automatic garbage
collection.

}Unmanaged code directly compiles to
machine code and runs on the machine where
it has been compiled. It does not have
services like security and memory
management.

}Converts MSIL code to native code.

}During the code execution time, the Managed
Code is compiled only when it is needed, that
is it converts the appropriate instructions to
the native code for execution just before
when each function is called.

}This process is called Just In Time (JIT)
compilation, also known as Dynamic
Translation .

C# VB .Net Perl J# C++

IL + Metadata

Base Class
Library

Class Loader

JIT

Native Code

Memory
Management

Security Engine

CPU

}set of basic language features that .NET
language need to develop applications and
services

}Ensures interoperability among applications
regardless of the language used to create the
applications

}Is a subset of Common Type System

}Defines how types are declared and managed
in Common Language Runtime

}Helps in cross language integration, type safety
and high performance code execution.

}Provides an object - oriented model that
supports the complete implementation of many
programming languages.

}Defines rules that languages must follow,
which helps ensure that objects written in
different languages can interact with each
other.

}Provides a library that contains the primitive
data types (such as Boolean , Byte, Char, Int32 ,
and UInt64) used in application development.

https://msdn.microsoft.com/en-us/library/system.boolean(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.byte(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.char(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.int32(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.uint64(v=vs.100).aspx

}Five categories of types supported by CTS: -

ƁClasses

ƁStructures

ƁEnumerations

ƁInterfaces

ƁDelegates

}Library of classes and interfaces that provide
access to system functionality

}Foundation on which .NET framework
applications, components and controls are
built.

}Example: System, System.Net , System.Linq

}Base Class Library ðirrespective of the type of
application

}Console Libraries

}Winform Libraries

}Webform Libraries

}Mobile Libraries

VB C# C++ J# é

Common Language Specification(CLS)

Common Type System(CTS)

.NET Framework Class Library(FCL)

ASP .NET
Windows

Forms
Console

ADO.NET .NET Remoting

Common Language Runtime(CLR)

Operating System

}Compiled and versioned code library that
contains a collection of code and metadata.

}Building blocks of .Net Framework
applications.

} smallest unit of deployment of a .net
application

}Can include both . dll or .exe file

}During compile time metadata is created with
MSIL and stored in a file called Assembly
Manifest.

}Every assembly that is created can have one
or more program files and a Manifest

}Assemblies are self - describing.

}The Assembly Manifest contains the version
number of the assembly.

}Multiple assemblies can be loaded side by
side.

}Assembly Structure
ƁAssembly Metadata

ƁType Metadata

ƁCIL Code

ƁResources

}There are two types of Assemblies:
ƁPrivate Assembly

ƁShared Assembly

A private assembly is used by a single application
and is usually stored in the applicationõs install
directory.

A shared assembly is one that can be referenced by
more than one application. If multiple applications
need to access an Assembly, we should add the
Assembly to the Global Assembly Cache (GAC).

}Information stored in the Assembly Manifest
ƁAssembly Name

ƁVersion Number

ƁList of all files in the assembly

ƁList of assemblies referenced by the assembly

